Design of Low Power Hearing Aid Processors

Prof. Dr.-Ing. Holger Blume
Institute of Microelectronic Systems
Leibniz Universität Hannover
Cluster of Excellence Hearing4all
Contents

- Hearing loss and modern hearing aids
- Concept of an Application Specific Instruction-Set Processor
- How to improve hearing aids with ASIPs
- The KAVUAKA ASIP architecture
- Current trends in hearing aid processor design
- Conclusion
Nicht sehen können trennt von den Dingen, nicht hören können von den Menschen.

Immanuel Kant

Quelle: wikimedia.org
Hearing Loss in modern Society

- Social interaction is based on communication
- Hearing loss is one of the most common sensoric deficits and often unknown or untreated

"https://www.preciosahome.com/buddha-bar/"
Perceptual Range of Hearing

- Painfully Loud
- Pain threshold
- Perception threshold
- Not noticeable
- Frequency kHz
- Sound level dB
Hearing Loss in the Outer and Middle Ear

- Conductive hearing loss
 - Blockage of the ear canal
 - Damage or infection in the middle ear

- Sensorineural hearing loss
 - Damage to the cochlea
 - Damaged auditory nerve

Quelle: https://www.hoersysteme.ch
Hearing Loss in the Inner Ear and Brain

- Neural hearing loss
 - Damaged auditory nerve (non-genetic or genetic reasons)
- Central hearing loss
 - Disturbed perception processing of auditory stimuli in the brain

Quelle: https://www.hoersysteme.ch
Hearing Aids against Hearing Loss

- Hearing aids can compensate for hearing loss in many cases
- An individual adjustment to the needs and complaints of a user is necessary and possible.
Hearing Loss and Hearing Aids

- From 2000 to 2015, the number of Americans with hearing loss has doubled. Globally the number is up by 44%. [1]
- Reduced speech intelligibility in complex acoustic scenarios with noise
- The consequences are difficulties with social interaction and at work
- Treatment: Hearing aid devices

Cochlear Implant

- Consisting of 2 components
 - Processor
 - Implant
- Processor usually worn behind the ear
- Implant placed under the skin
Institute of Microelectronic Systems
Market shares of the largest hearing aid companies

- Market volume: ~6 billion US dollars

Quelle: Finanz und Wirtschaft (Schweiz)
Cochlear Implant Manufacturer

- Market volume: ~3 billion US dollars
Signal Processing in High-End Hearing Aids Systems

Example of Audiogram

Classification
knowledge
knowledge

Feature
classification
algorithm
situation
parameter
selection

Directional microphone
omni-directional

Feedback suppression

Analysis
Noise reduction
Amplification
(incl. Dynamic compression)
Synthesis
filterbank

Prof. Holger Blume
Seminar Processor Design, December 11, 2020
Digital Hearing Aid Systems

- Hearing aid technology requirements
 - Low-power: \(~1 \text{ mW}\) (longer battery lifetime)
 - Low processing delay: \(<10 \text{ ms}\)
 - Small form factor (higher user acceptance)
 - Processing performance (algorithms)
 - Programmability / flexibility
Application Specific Instruction-Set Processor for Hearing Aids

- Exploring the application specific instruction set processor concept for hearing aid systems
 - ISA, data path width, pipelining, ...
- Evaluating low-power hardware accelerators and design methodologies
 - Co-processors, custom hardware, ...
- Power Optimization
 - Power modeling and power-aware compiler/scheduler techniques
Low-Power Hearing Aid ASIPs

RISC Processor

\[A_a \]

Real-Time Processing Constraints (\(t_c \))

\[f_a = \frac{N}{t_c} \]

\[P_{dyn,a} = \sigma \cdot f_a \cdot C_a \cdot U^2 \]

RISC Processor

\[A_b = 2 \cdot A_a \]

Real-Time Processing Constraints (\(t_c \))

\[f_b = \frac{1}{4} \cdot f_a \]

\[P_{dyn,b} = \frac{1}{2} \cdot \sigma \cdot f_a \cdot C_a \cdot U^2 \]
Application Specific Instruction-Set Processor

- Baseline Architecture
Application Specific Instruction-Set Processor

- Baseline Architecture
- Basic Architecture Parameters
 - Register File Configuration
 - Memory System
 - Instruction-Set Architecture
- Parallelization Techniques
 - Number of Parallel Instructions
 - SIMD / Subword Parallelism
- Specialization Techniques
 - Custom Instructions
 - Co-processor Architectures
- Compiler / Software Support
Xtensa Customizable Processor / Cadence

- **Baseline Architecture**
 - Reduced 32-bit ISA, 5 pipeline stages
 - 16 KB Instruction Cache and 16 KB Memory Cache
- **Configurable**
 - Caches, bus width, GP register file, MUL, MAC, INT, number of load/store units
- **Expandable**
 - New instruction, register, ports
 - Using TIE language (similar to Verilog)

- Area and energy optimization are possible
Extension of the Xtensia Processor with hardware units

- Using TIE language (Tensilica Instruction Extension)
 - Custom instructions, registers and interfaces
 - Can be used in the C program code
 - SIMD-example: 4x 16bit additions

```c
#include <xtensa/tie/vec4_add16.h>
simd64 A[VECLEN];
simd64 B[VECLEN];
simd64 sum[VECLEN];
for (i=0; i<VECLEN; i++)
  sum[i] = vec4_add16(A[i],B[i]);
```

Definition of a custom instruction

```c
define vec4_add16
```
Institute of Microelectronic Systems

Xtensa Customizable Processor / Cadence

- Configuration Implemented for the HA System
 - Baseline (1-Issue-Slot)
 - Baseline (2-Issue-Slots)
 - Baseline (3-Issue-Slots)
 Exploring parallelism

- Customized (1-Issue-Slot)
 Exploring specialization

- Customized (2-Issue-Slots)
 Exploring parallelism and specialization
Customized Configuration: Complex Instruction Extensions

- Analysis Filterbank
- Noise Reduction
- Amplification (incl. Dynamic compression)
- Synthesis Filterbank

Total number of cycles per Audio Buffer:
- 50% FFT
- 65% SQRT
- 50% IFFT

Overlap+Add
Customized Configuration: Complex Instruction Extensions

Customized Configuration: Complex Instruction Extensions

 - $R0 = \text{COMPLEX}_\text{ADD}(R1,R2)$
 - $R0 = \text{COMPLEX}_\text{MUL}(R1,R2)$
 - $R0 = \text{COMPLEX}_\text{CONJ}(R1)$
 - $AR0 = \text{BIT}_\text{REVERSE}(AR1)$

![Diagram of register file and complex arithmetic operations]

![Graph of total number of cycles per audio buffer]

Prof. Holger Blume
Seminar Processor Design, December 11, 2020
Customized Configuration: Complex Instruction Extensions

 - \(R_0 = \text{COMPLEX_ADD}(R_1, R_2) \)
 - \(R_0 = \text{COMPLEX_MUL}(R_1, R_2) \)
 - \(R_0 = \text{COMPLEX_CONJ}(R_1) \)
 - \(AR_0 = \text{BIT_REVERSE}(AR_1) \)

![Diagram of Register File](image)

Register File (each Register 64-Bits)

<table>
<thead>
<tr>
<th>Register</th>
<th>C.real</th>
<th>C.img</th>
</tr>
</thead>
<tbody>
<tr>
<td>R0</td>
<td>A.real</td>
<td>A.img</td>
</tr>
<tr>
<td>R1</td>
<td>B.real</td>
<td>B.img</td>
</tr>
<tr>
<td>R2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram of Arithmetic Operations

- \(\text{ADD} \)
- \(\text{MUL} \)
- \(\text{SUB} \)
- \(\text{ADD} \)

Graph of Total Number of Cycles per Audio Buffer

- Analysis Filterbank: 5000 cycles
- Noise Reduction: 10000 cycles
- Amplification: 15000 cycles
- Synthesis Filterbank: 20000 cycles

65% SQRT reduction
Customized Configuration: Complex Instruction Extensions

- **SQRT Operations**
 - LEADING_ONES(R0)
 - \(R0 = SQUARE_ROOT(R1) \)
 - \(R0 = THRESHOLD(R0,R1,R2) \)

Newton-Raphson method for square root computation

![Graph showing total number of cycles per Audio Buffer for different stages](image)

- Analysis Filterbank: x16 reduction, 65% SQRT
- Noise Reduction: negligible
- Amplification: negligible
- Synthesis Filterbank: negligible

Prof. Holger Blume
Seminar Processor Design, December 11, 2020
Exemplary Hearing Aid Processing - ASIP Design Space Exploration

These estimations are done for a 40 nm low power technology process.

[Werner; Payá Vayá, Blume, “Case Study: Using the Xtensa LX4 Configurable Processor for Hearing Aid Applications”, ICT.OPEN 2013]
Exemplary Hearing Aid Processing - ASIP Design Space Exploration

These estimations are done for a 40 nm low power technology process.
Baseline KAVUAKA Architecture

- **ASIP Processor Architecture**
- **Basic Generic Parameters**
 - Pipeline Stages
 - Bitwidth (64/48/32/24 bit)
- **Parallelization Techniques**
 - SIMD Subword Parallelism
 - VLIW Instruction Parallelism
- **Specialization Techniques**
 - Complex-valued MAC
 - Co-Processors
 - Instruction Merge (X2)
 - Idle Operation
- 4 configurations selected for the SoC
KAVUAKA Hearing Aid Processor System-on-Chip

- The manufactured KAVUAKA hearing aid System-on-Chip
 - 40 nm TSMC LP technology
 - 3.6 mm² chip area
 - 0.8 million standard cells
 - 28 SRAM memories
 - 4x 2048x64-bit
 - 4x 1024x64-bit
 - 4x 1024x48-bit
 - 16x 512x16-bit
 - 37 input/output cells
 - 8 metal layers

Close-up of the chip with approx. 125x magnification.
KAVUAKA ASIP configurations

<table>
<thead>
<tr>
<th>SIMD instructions</th>
<th>CMAC (CMAC)</th>
<th>Instruction Merge (X2)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1x64 bit, 2x32 bit, and 8x8 bit</td>
<td>Functional units duplicated</td>
</tr>
<tr>
<td></td>
<td>2x24 bit, 4x12 bit</td>
<td>Load/Store up to 256 bit</td>
</tr>
<tr>
<td></td>
<td>4x12 bit</td>
<td>Functional units duplicated</td>
</tr>
<tr>
<td></td>
<td>4x12 bit</td>
<td>Load/Store up to 192 bit</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Scalar instructions</th>
<th>Standard MAC</th>
<th>No Instruction Merge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1x32 bit</td>
<td>Load/Store up to 64 bit</td>
</tr>
<tr>
<td></td>
<td>1x24 bit</td>
<td>Load/Store up to 48 bit</td>
</tr>
</tbody>
</table>
Co-Processor Architecture

- Co-Processor Architecture
 - CORDIC (Coordinate Rotation Digital Computer)
- Generic parameters
 - Number of CORDIC kernel processing units
 - Single instruction multiple data (SIMD) operations

➢ 10 configurations selected for the SoC

Example applications:
- Division: Normalized LMS Algorithm (Beamforming)
- Logarithm: Log power spectrum (Speech recognition)
The System-on-Chip Architecture

System-on-Chip
with
4 KAVUAKA
cores and
10 co-processors
In-circuit Emulation of KAVUAKA

- Functional verification of the SoC
- Use real or emulated external components
- ASIC is placed on the test socket after tape-out
Setup for Power Measurements

- Measure the power consumption for different hearing aid configurations and algorithms
- Automatic measurements including:
 - Host PC for controlling and audio streaming
 - Power supply and oscilloscopes controlled by PC
 - FPGA emulation of external hearing aid components
Beamforming Algorithms for Hearing Aids

Fixed Beamformer

Adaptive Gain Beamformer

Adaptive Filter Beamformer
Results for Beamforming Algorithms on different ASIP configurations

- Fixed and adaptive Beamforming algorithms
- 4 ASIP configurations
- Power and area evaluation

![Graph showing power consumption in mW for different configurations.](image-url)

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Power Consumption in mW</th>
</tr>
</thead>
<tbody>
<tr>
<td>24-bit</td>
<td>0.00</td>
</tr>
<tr>
<td>32-bit</td>
<td>0.20</td>
</tr>
<tr>
<td>48-bit +SIMD</td>
<td>0.42</td>
</tr>
<tr>
<td>64-bit +SIMD</td>
<td>2.91</td>
</tr>
</tbody>
</table>

![Diagram showing 64-bit SIMD Processor and 48-bit SIMD Processor configurations.](image-url)
Power Optimization Based on an Accurate Power Model

- Power optimization after manufacturing
- Exploit the flexibility offered by the ASIP architecture
 - During instruction scheduling and register allocation
- Register accesses cause high switching activity in the address decoder of the multi port register file

Register addressing of two consecutive instructions influences power consumption

<table>
<thead>
<tr>
<th>Worst Case:</th>
<th>Best case:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD R0, R0, R0</td>
<td>ADD R0, R0, R0</td>
</tr>
<tr>
<td>ADD R31, R31, R31</td>
<td>ADD R0, R0, R0</td>
</tr>
</tbody>
</table>

Graph showing total power consumption for worst and best cases with a decrease of 7.87%
Feature Sizes of Commercial and Research Hearing Aids

- Hard-wired w/ an analog front end
- ASIP w/ an analog front end
- ASIP+accelerators w/ an analog front end
- Hard-wired w/o an analog front end
- ASIP w/o an analog front end
- ASIP+accelerators w/o an analog front end

Smart Hearable
28 nm

KAVUAKA
40 nm

Processor With CNN FFT Accelerators
Power Consumption of Commercial and Research Hearing Aids

- Hard-wired w/ an analog front end
- ASIP w/ an analog front end
- ASIP+accelerators w/ an analog front end
- Hard-wired w/o an analog front end
- ASIP w/o an analog front end
- ASIP+accelerators w/o an analog front end

Smart Hearable
28 nm
Processor With CNN FFT Accelerators

KAVUAKA
40 nm
Silicon Area of Commercial and Research Hearing Aids

- Hard-wired w/ an analog front end
- ASIP w/ an analog front end
- **ASIP+accelerators** w/ an analog front end
- Hard-wired w/o an analog front end
- ASIP w/o an analog front end
- **ASIP+accelerators** w/o an analog front end

- Smart Hearable
 - 28 nm
- Processor With
 - CNN FFT
 - KAVUAKA
 - 40 nm
On-Chip Memory Sizes

On-Chip Memory Sizes in kB

- EZAIRO 7111
- HYBRID: Audio Processor
- KAVUAKA
- Processor With CNN FFT Accelerators

Prof. Holger Blume
Seminar Processor Design, December 11, 2020
Smart Hearing Aid Processor (SmartHeaP) ASIC Concept

Reference algorithms

22 nm FDSOI
Applied Deep Learning in Hearing Aids

- Cocktail Party Scenario: many Speakers and Noise
- Advanced techniques available e.g. Beamformers, but Direction of Arrival (DOA) as input is needed [ICASSP 2020]
- Use CNN to estimate DOA of Speech
Conclusion

- Number of hearing impaired persons increases
 - New hearing aids are necessary
- Strict constrains, like power consumption or processing performance
- KAVUAKA - a hearing aid ASIP from the IMS
 - Design process and verification
 - Post silicon evaluation and optimization
- Further trends in hearing aid research
 - Accelerators for neural networks
 - EEG signal processing