—‘ TECHNISCHE
%”
c 0/

7/=) UNIVERSITAT
9’ DARMSTADT

Rethinking Distributed
Databases for Modern Networks

Carsten Binnig

\\r/ M\ oRrACLE

H U AWEI Mellanox

UFG

In the past ...

/

Network Communication was evil: Must be avoided at all cost

DDR3 -1600 1Gb Eth. Net/RAM
Latency (ps) 0.1 100 1000
Throughput (GB/s) 51.2 (4 channels) 0.125 ~400

Distributed DBMS Mantra: Data-Locality first!
 Complex partitioning schemes to leverage data-locality

 Complex communication avoiding schemes (e.g. semi-join
reducers, relaxed consistency protocols)

BUT modern networks ...

INFINIBAND" make it possible to achieve

TRADE ASSOCIATION network bandwidth
similar to the main

memory bandwidth

¢

and it does no longer \
ruin your budget 3

Distributed Systems are
getting more balanced!

Bandwidth (GB/s)

R R NDNWWS
O U1 O U1 O U1 O U1 O
|

12x [

_- _— .
AFXAFRAZFEEA3598e %
i — —A|] O[]0 |
('30] ||
a)
QDR | FDR-10 FDR EDR DDR3
InfiniBand Memory

Distributed DBMSs:
Just Upgrade Network?

OLTP: Scale-out Experiment on TPC-C

Binnig et al.: The End of A Myth: Distributed Transactions Can Scale. VLDB 2017

- Shared-nothing (No RDMA)

8
S
KS)
T .
£ o .
g g
3
3 2 4
= =
g o
3 2
=
8%,
Q
0 — ===
10 20 30 40 50
Machines

Workload: standard TPC-C, with 50 warehouses per server.
27 machines of type: Two Xeon E7-4820 processors (each with 8 cores), 128 GB RAM
28 machines of type: Two Xeon E5-2660 processors (each with 8 cores), 256 GB RAM

How do we redesign DBMSs?

Classical DBMSs: Shared-Nothing

1 0 0 T 3
				11
				11
				11
: CPU P CPU P CPU & CPU :				
				11
				11
o gl e st e g e g
i Memory i i Memory i i Memory i i Memory i
o I I A l
Server 1 Server 2 Server 3 Server 4

Problems of shared nothing
 Message Passing between nodes using IP stack (IPolB)
 Bottlenecks due to load imbalance / skew

SI9AJ3S SI19AI9S
91hdwo) AJowa|N

Separate state and compute -> scalability & load balancing

The Network-Attached-Memory
Database Architecture (NAM-DB)

Use RDMA for ALL communication

NAM-DB: Naive OLTP Protocol

(based on Generalized Sl)

TSs are bottleneck

\
Client (Compute Server) [Memory Servers)
1) RDMA-READ “Read TS” pmmmmmmm— e —————— ~
2) RDMA-READ n (version/pointers)-pairs ll Read TS (64 bit): t;
3) RDMA-READ payload according to : Commit TS (64 bit): ts
“Read TS” (abort if version is no longer : Committed TSs: t,

1

1

1

\

vailable)
l 4) RDMA-Atomic-Increment of “Commit TS”]
5) For every record in write-set

a) RDMA-Compare-And-Swap (64bit)
the read record version to “Commit
TS”. If fails, roll-back all changed
records.

b) RDMA-Write payload

c) RDMA-Write to install new version by
simply replacing n (record/version)
pairs

5) RDMA-Send “Commit TS” to append
“Commit TS” to “Committed TSs

A
S
I

|

4| tg |ty [pa t3|F)3Itz|l92 t, |p;

Payload 1 Payload 3

Payload 10| ...

]

A

. ﬂ
173 | t5] s |p51t3 |p3It2 |p2 | ts |Ps

Payload 2 | Payload 14

|
|
'\ Payload 20 | «s.

rA EVVE]S IRELVE]S

BELVE]S

Alternative: Timestamp Vectors

Commit Timestamps

‘ LlEmicID TS (56 bits)

(8-bits)

Read Timestamps (vector)

Highest committed TS by client 0 (56 bits)

Highest committed TS by client 1 (56 bits)

Highest committed TS by client 2 (56 bits)

Highest committed TS by client 3 (56 bits)

Highest committed TS by client k (56 bits)

(Memory Servers

T ——————— ~
(\
| |
| |
I I
| |
| |
|
|
I‘ |
------------------ ’
‘" A
:rl' t7 |p7|ta |Pafto [P2 |t [Py :
:r9: ts |ps|te [Ps|t1 IP1 :
1 Fa Vq |p41v3 |p3Iv2 |p2| V1 P2 :
: Payload 1 Payload 3| |
! Payload 10| ... :
‘v —————————————————— ~(
|{r5' V3 P3| V2 P2 Va [Py :
:rZ: Vo [p2| Vo IP1 :
:r3: Vs |I351V3 |p3Iv2 |p2| V1 [p1) ¥
I Payload 2 I Payload 14 :
| |
o L r

Z JOAISS T JOAJSS

BELVE]S

[EY
N

Example: Record and TS Vector

Read-TS

Record (Multiple versions)

Co:t]_]_

Ps

Ci:1e | Pe

C1:ty

9!

Cy:t;

P2

13

Example: Record and TS Vector

Read-TS Record (Multiple versions)

Co:tiz | Ps C1:1e | Pe Ci:ly P3 Cy:t; P2

* Similar to vector-clocks but not really the same
(Read-TS is a vector, a version consist of a single TS)
e Can still guarantee Sl not only generalized S|
* Avoids problems with long-running transactions and stale-reads

14

OLTP: Scale-out Experiment on TPC-C

Binnig et al.: The End of A Myth: Distributed Transactions Can Scale. VLDB 2017

- Shared-nothing (No RDMA)

8
S
KS)
T .
£ o .
g g
3
3 2 4
= =
g o
3 2
=
8%,
Q
0 — ===
10 20 30 40 50
Machines

Workload: standard TPC-C, with 50 warehouses per server.
27 machines of type: Two Xeon E7-4820 processors (each with 8 cores), 128 GB RAM
28 machines of type: Two Xeon E5-2660 processors (each with 8 cores), 256 GB RAM

OLTP: Scale-out Experiment on TPC-C

All Distributed transactions

— Shared-nothing (No RDMA) —— NAM-DB (wo locality)

8
=4
S
E 5 6
£ T
;o
w
3 & 4
& >
- C
D @)
3 2
S
2
Q

0 —

10 20 30 40 50
Machines

Workload: standard TPC-C, with 50 warehouses per server.
27 machines of type: Two Xeon E7-4820 processors (each with 8 cores), 128 GB RAM 16
28 machines of type: Two Xeon E5-2660 processors (each with 8 cores), 256 GB RAM

OLTP: Scale-out Experiment on TPC-C

— Shared-nothing (No RDMA) - NAM-DB (wo locality) NAM-DB (w locality)

8
=
S
E 5 6
S
3 3
2 2 4
g >
(-
E @)
§ 2
-
8]
Q
0 —
10 20 30 40 50
Machines

Workload: standard TPC-C, with 50 warehouses per server.
27 machines of type: Two Xeon E7-4820 processors (each with 8 cores), 128 GB RAM 17
28 machines of type: Two Xeon E5-2660 processors (each with 8 cores), 256 GB RAM

OLTP: Scale-out Experiment on TPC-C

—— Shared-nothing (No RDMA) — NAM-DB (wo locality) NAM-DB (w locality)

8
<
g
T . ;
£ o
o @ | G
3 Z Il .
3 ¢ 4 - Microsoft FaRM
& >
3 O
2
é 2
2
Q

0 —

15 30 45 60 75 90

Machines
Workload: standard TPC-C, with 50 warehouses per server.
27 machines of type: Two Xeon E7-4820 processors (each with 8 cores), 128 GB RAM
28 machines of type: Two Xeon E5-2660 processors (each with 8 cores), 256 GB RAM
FaRM: From the paper “No compromises: distributed transactions with consistency, availability, and performance”

18

Many (Important) Details Left Out

How to find records? (see next slides)

Fault-Tolerance, availability, and durability
(NVM, replication and additional checks to undo-
transactions of failed clients)

Many, many possible optimizations (caches in
compute server, extend RDMA verbs by
programmable NICs)

19

NAM-DB: Remote Table Access

How to enable efficient access of remote tables (key
and range lookups) on memory servers?

Compute
Server

Customer.id=1?

Remote Data

Customer.age>20?

Memory
Server

Key Question: How to design of tree-based indexes (i.e.,

B-tree like indexes) for RDMA?

20

NAM-DB: Remote Indexes

Ziegler et al.: Designing Distributed Tree-based Indexes for RDMA. SIGMOD’19

Index Distribution: How to distribute remote indexes
across memory servers?

Server 1 Server 2 Server 3 Server 1 Server 2 Server 3
Fooltasalbe o
Coarse-grained Distribution Fine-grained Distribution

Index Access: How to implement index accesses from
compute servers?

* One-Sided RDMA: Memory-based (READ / WRITE)
 Two-Sided RDMA: RPC-based (SEND / RCV)

21

NAM-DB: Index Design Space

The “Design Matrix” for RDMA-based Indexes:

Index Distribution

Server 1 Server 2 Server 3 Server 1 Server 2 Server 3
iy
Coarse-grained Distribution Fine-grained Distribution

w "

) _ No benefits over

¢ Two-Sided one-sided*

o

<

X) .

o One-Sided Strictly wo.rse than J

'g two-sided

*Assuming that each RDMA access needs to visit a different server

22

Design 1: Coarse-Grained / 2-sided

NAM-DB
Compute
1. Request key / 3. Send result
range (2- (2-sided)
Se
: : NAM-DB
2. Traverse Memory

(on se

Only one roundtrip BUT sensitive to skewness

Design 2: Fine-grained / 1-sided

NAM-DB
tx 1 tx 2 .txn Compute

1 N Re a d N O d e | Root Replica(Server 2)
one-sided) [RootNedeSerers

. Read Node £

emote Lock + Version-|

ne-sided), =

Key + Ptr
Key + Ptr
7’| Ptr+Sbl

Key + Ptr

K9§ + Ptr
Key + Ptr

Inner Node (Server 2) Inner Node (Server 1)

ol sl sl sl= elslslsl=

fa N o 1o o ol W 1o Pl] -

+| +| +| +] +| + Remote +| +H| +| +] +] +

2 33 3 3= Pointer S > > > o

ol © | O]+ ol 0|l o]l @ =

|l [—— 7 [L]|L[L|L|e|E M

3. Read Leave(s) _ , emo
Lock + Version Lock + Version
.
(one-sidey)
Pointer Remote
Pointer
Head Node (Server 1) Leaf Node (Server 2) Leaf Node (Server 1) Leaf Node (Server 2) Leaf Node (Server 1)
] K I S s s O| 0| 5| 3| 8|5 | 8|8 s|S|a J| 5| 5| S| 8| B
s\ =555l & S|13(31513(8 Remote S(3|333(8 Remote >(3315|518 Remote S(2131=3(8
E|E|a|a|&|E +++++2 Pointer +++++‘£ Pointer +++++£ Pointer +++++$
> > > > > > > > > > 2> > > > > 2 >N > >N >
ol o] o] @] @] + ol ol o] ol @f + ol ol o| @l @] + ol o]l ol @l @] +
S 1 15 I) 12 2 1) B A T 2 2 R B |] I)) R R R e
Lock + Version Lock + Version Lock + Version Lock + Version
K o
Remote
Pointers

Multiple roundtrips BUT better load balancing

Design 3: Hybrid (Fine/Coarse)

NAM-DB
Compute
1. Request gy ~N.
(2-sided) 3. Send pointer

. (2-sided)

< (S th

£ (Server thr . Read Leave(s)

0 ne-sided

:) NAM-DB

o Memory

e-grained

One roundtrip for index traversal +

Multiple reads of data for better load balancing

NAM-DB: Evaluation (Indexes)

Index Workloads: Throughput (Workload A+B, Skewed):

Point Queries Range Queries (Sel=0.001)
Workload | Point Queries | Range Queries (sel=s) | Inserts
A 100% . 1%
10° 4
B 100% s s
C 95% 5% b g
D 50% 50% - -
10° mdgm Coarse-Grained
m@= Fine-Grained
mfym Hybrid
P —
0 40 80 120 160 200 240 0 40 80 120 160 200 240
Clients Clients
Setup: (a) Point Query (b) Range Query (sel=0.001)
Range Queries (Sel=0.01) Range Queries (Sel=0.1)
« 4 Memory Servers
« 6 Compute Servers 10° 107 |
* No co-location % $
« Data 100M unique keys R g 10
0 40 80 120 160 200 240 0 40 80 120 160 200 240
Clients Clients
(c) Range Query (sel=0.01) (d) Range Query (sel=0.1)

26

Networks are becoming smart

Smart NICs & Switches Software-defined-Networking
- ZERRFW Progsr;?:crl;able Controller

Use network to offload computation from a distribute DBMS
— In-Network-Processing (INP) of SQL operators?

27

A motivating example

* Data warehousing scenario: star schema
* Fact table A not co-partitioned with dimensions B and C

Star Schema: SELECT * FROM A JOIN B JOIN C
T T .
A Shlme
B C “ é
Dim. table Dim. table | Probe HT | >"€|’HT |
:

Shuffle | Shuffle |
|
A

28

Traditional Distributed Execution

Steps:

1. Shuffle table B & build HT
Shuffle table A & probe HT of B
Shuffle table C & build HT

Shuffle intermediate A < B &
probe HT of C

Observation: @] @) @] @]
B# C#

Re-shuffling of large fact table Ais % % H w
expensive

N

Switch

w

s

A

>incbd B >fmchdHic Spoobd HT< — >imcbbHR

29

Moreover, skew is a problem

Non-uniform foreign-key
distribution =2 network skew

Network link to one node is
getting congested

* Increased shuffling time

* Increased processing time on
straggler

Switch

ORI O

o

30

Case for In-network Processing

Steps:

1. Send table B and C to switch Switch
and build HT in switch R

2. Stream fact table A through R

switch & probe HTs

@ @b

* Avoids re-shuffling of large fact
table A

e Not sensitive to skew

Custom switch prototype

Current P4 switches (e.g.,
Barefoot Tofino) have many
limitations

Our own prototype switch:
* FPGA chosen as processing unit

e Based on network focused
FPGA dev board (NetFPGA
SUME)

e 2x4GB DDR3 memory @
800MHz

32

INP-Join: Experimental Evaluation

Query: AXBXCxXD
Data: A:5 X 10°to 5 X 10° tuples - B, C& D: 50 X 10° tuples

150 __,,* = NetJoin 200 _+_ NetJoin
3 125 ~o-— Baseline 3 400 —o-— Baseline
g £
00
= ‘S 300
5 7 s
= = 200
3 50 !
g g
)) 100

¢ }

0

s
B

107 108 109 107 10% 107
A relation size (tuples) A relation size (tuples)

Without Skew With Skew

33

Conclusions and Future Work

The next generation of high-speed networks requires us to
rethink distributed database systems

Network-Attached Memory (NAM) as a general distributed
architecture to take advantage of fast networks

Other workloads: Streaming, ML, Graphes, ...

Networks are not only getting “faster” but also “smarter”

34

Collaborators

35

