

Basic	Coordination Language	
PPHER		
Component calls		
asynchronous & sync	hronous calls	
<pre>#pragma pph cal cf1(A, N, B, M) #pragma pph cal cf2(B, M);</pre>	l ; // A:read, B:write (XML meta- l	data)
<pre>#pragma pph cal cf(A, N); // bl</pre>	l sync .ock until cf() returns	
		s uive

Experimental Results						
PEPP	HER 🕹					
Ti	led QR Decompos	sition ctd.				
A	ffinity-based	scheduling	g			
•	Select variant	s with highe	est expected pe	erformance		
•	Utilize both CPUs and GPUs					
	BLAS kernel	CPU Gflops	GPU GFlops	Speed-up ratio		
	SGEQRT	9	30	3		
	STSQRT	12	37	3		
	SORMQR	8.5	227	27		
	SSSMQR	10	285	28		
•	 SSSMQR: 90% of tasks mapped to GPUs 					
•	SGEORT: 20% of tasks mapped to GPUs					
S. Benk	kner, University of Vienna	Invasio	C Seminar, Erlangen, June 22, 201	۔ ۵ سن	versität en	

Experimental Results					
PEPPHER 🕹					
Results achieved with	PEPPHER Transformat	tion S	ystem		
Architecture A	Image Size	VGA	SVGA	XGA	QXGA
 2 Intel Xeon X7560 (8 core RHEL 5.0 	es) Intel TBB (1 Core) our approach (1 Core)	15.61 12.40	23.51 17.85	41.84 30.72	170.58 140.86
\rightarrow speedup > 13	Intel TBB (16 Core) our approach (16 Cores)	1.26 1.16	1.92 1.72	3.39 2.91	13.60 12.33
			execution	times in	5
	Image Size	VGA	SVGA	XGA	QXGA
Architecture B	Intel TBB (1 Core)	12.75	20.07	35.15	145.68
 2 Intel Xeon X5550 (4 core 	es) our approach (1 Core)	9.62	14.33	24.94	111.45
• 1 GeForce GTX 480	our approach (1 Core + 1 GPU) our approach (1 Core + 2 GPUs)	3.94 2.95	5.91 2.72	10.35 6.53	46.30 30.81
• 1 GeForce GTX 285	Intel TBB (8 Cores)	1.47	2.29	4.13	17.4
	our approach (8 Cores)	1.18	1.78	3.58	13.69
• CUDA 4.0, RHEL 5.6	our approach (7 Cores + 1 GPU)	1.13	1.63	2.91	11.89
\rightarrow speedup: 7-13	our approach (6 Cores + 2 GPUs)	0.94	1.40	2.44	10.71
S. Benkner, University of Vienna	InvasIC Seminar, Erlangen, June 22, 20	12	execution	times in	

Related Work					
PEPPHER 🕹					
 Task Offloading HMPP (CAPS, France) OmpSs (UPC, Barcelona) OpenACC 	Offload (Codeplay, UK)PGI Accelerate				
Algorithmic Choice S	treaming/Pipelining Languages				
 Elastic Computing (U. Florida) 	StreamIt (MIT)				
PetaBricks (MIT)	• Elk (Stanford, ELM Architecture)				
•	•				
Current European Projects					
 ADVANCE (<u>www.project-advance</u> AUTOTUNE (<u>www.autotune-project.eu</u>) CARP (<u>www.carpproject.eu</u>) ENCORE (<u>www.encore-project.cu</u>) PARAPHRASE (<u>www.paraphrase</u>) 	<u>:e.eu)</u> jject.eu) <u>eu)</u> e-ict.eu)				
S. Benkner, University of Vienna InvasIC, Seminar	Erlangen June 22 2012				

📸 Fut	ture Work				
PEPPHER 🕹					
Extend language support for dat	ta partitioning/management				
Extend framework with other pa	atterns (e.g. MapReduce)				
Component Performance Models	5				
Auto-tuning support for patterns	5				
New Architectures: NVIDIA Kepl	ler, Intel MIC, Movidius Myriad Platform				
Optimization for energy-efficience	cy				
AutoTune Project: Automat	ic Online Tuning				
• TU Munich (M. Gerndt, coordina	tor) • LRZ Munich (M. Brehm)				
• Uni Wien (S. Benkner)	UA Barcelona (A. Sikora)				
CAPS (F. Bodin)	ICHEC Ireland (I. Girotto)				
\rightarrow http://www.autotune-project.eu/					
S. Benkner, University of Vienna Inva	asIC Seminar, Erlangen, June 22, 2012	 Universität Wien 			

