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Motivation
•Multi-cores are ubiquitous
•Try buying a single-core mobile phone, netbook, 

PC, or whatsoever!

•Legacy code base of sequential applications
•Writing parallel applications is hard!

•No single parallel machine model
•Different parallel programs for different parallel 

machines

• Parallelisation is not a one-off activity: Need to 
parallelise each application for each new platform 
again
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Tool Support for Parallelisation Increases 
Programmer Efficiency, Reduces Time-
to-Market, Reduces Number of Bugs, 
Secures Software Investments etc.

BUT...



State-of-the-Art

NAS PB
SPEC FP

NAS NPB 2.3 OMP-C  and  SPEC  CFP2000
2 Quad-cores (8 cores in total) Intel Xeon X5450 @ 3.00GHz
Intel icc 10.1 -O2 -xT -axT -ipo

Complete Failure of Auto-Parallelisation 
Despite >30 Years of Intensive Research!



Observations

•Static Dependence Analysis Doesn’t Work
➙ Part 1: Profile Directed Dependence Analysis

•Mapping of Parallelism is Really Hard 
➙ Part 2: Machine Learning Based Mapping

•Parallelising FOR Loops is Not Enough 
➙ Part 3: Extraction of Pipeline Parallelism



PART 1:
PROFILE DIRECTED 

DEPENDENCE ANALYSIS



Motivating Example

• Static analysis fails to 
detect any parallelism

• Problems :

- indirect array accesses

- compl. array reductions

- variable iteration count

- pointer aliasing

- dynamic memory allocation

• But: Loop is parallel for 
all legal data inputs!

Example 1
f o r ( i = 0 ; i < nodes ; i ++) {

Anext = Aindex [ i ] ;
A l a s t = Aindex [ i + 1 ] ;

sum0 = A[ Anext ] [ 0 ] [ 0 ] ∗ v [ i ] [ 0 ] +
A[ Anext ] [ 0 ] [ 1 ] ∗ v [ i ] [ 1 ] +
A[ Anext ] [ 0 ] [ 2 ] ∗ v [ i ] [ 2 ] ;

sum1 = . . .

Anext ++;
whi le ( Anext < A l a s t ) {

c o l = Acol [ Anext ] ;

sum0 += A[ Anext ] [ 0 ] [ 0 ] ∗ v [ c o l ] [ 0 ] +
A[ Anext ] [ 0 ] [ 1 ] ∗ v [ c o l ] [ 1 ] +
A[ Anext ] [ 0 ] [ 2 ] ∗ v [ c o l ] [ 2 ] ;

sum1 += . . .

w[ c o l ] [ 0 ] += A[ Anext ] [ 0 ] [ 0 ] ∗ v [ i ] [ 0 ] +
A[ Anext ] [ 1 ] [ 0 ] ∗ v [ i ] [ 1 ] +
A[ Anext ] [ 2 ] [ 0 ] ∗ v [ i ] [ 2 ] ;

w[ c o l ] [ 1 ] += . . .
Anext ++;

}
w[ i ] [ 0 ] += sum0 ;
w[ i ] [ 1 ] += . . .

}

Figure 1. Static analysis is challenged by sparse array reduction
operations and the inner while loop in the SPEC equake benchmark.

nificant improvements when compared with state-of-the-art paral-
lelizing compilers, but comes close and sometimes exceeds the per-
formance of manually parallelized codes. We show that profiling-
driven analyses can detect more parallel loops than static tech-
niques. A surprising result is that all loops classified as parallel
by our technique are correctly identified as such, despite the fact
that only a single, small data input is considered for parallelism
detection. Furthermore, we show that parallelism detection in iso-
lation is not sufficient to achieve high performance, and neither
are conventional mapping heuristics. Our machine-learning based
mapping approach provides the adaptivity across platforms that is
required for a genuinely portable parallelization strategy. On av-
erage, our methodology achieves 96% of the performance of the
hand-tuned OpenMP NAS and SPEC parallel benchmarks on the
Intel Xeon platform, and a significant speedup over manually par-
allelized codes for the Cell platform, demonstrating the potential
of profile-guided machine-learning based auto-parallelization for
complex multi-core platforms.

Overview. The remainder of this paper is structured as follows.
We motivate our work based on simple examples in section 2. This
is followed by a presentation of our parallelization framework in
section 3. Our experimental methodology and results are discussed
in sections 4 and 5, respectively. We establish a wider context of
related work in section 6 before we summarize and conclude in
section 7.

2. Motivation
Parallelism Detection. Figure 1 shows a short excerpt of the svmp
function of the SPEC equake benchmark that takes up more than
60% of the total execution time. While conservative static analysis
fails to parallelize both loops due to sparse matrix operations and
the inner while loop, profiling-based dependence analysis provides
us with the additional information that no actual data dependence
inhibits parallelization for a given sample input. While we still can-
not prove absence of data dependences for every possible input we

can classify both loops as candidates for parallelization (reduction)
and, if profitably parallelizable, present it to the user for approval.
This example demonstrates that static analysis is overly conserva-
tive. Profiling information, on the other hand, can provide accu-
rate dependence information for a specific input. When combined
we can select candidates for parallelization based on empirical ev-
idence and, hence, can eventually extract more application paral-
lelism than purely static approaches.

#pragma omp f o r r e d u c t i o n ( + : sum ) p r i v a t e ( d )
f o r ( j =1 ; j <= l a s t c o l −f i r s t c o l −1; j ++) {

d = x [ j ] − r [ j ] ;
sum = sum + d ∗ d ;

}

Figure 2. Complex mapping for the simple cg benchmark.

Mapping. In figure 2 a parallel reduction loop originating from
the parallel NAS cg benchmark is shown. Despite the simplicity of
the code, mapping decisions are non-trivial. For example, parallel
execution of this loop is not profitable for the Cell BE platform due
to high communication costs between processing elements. In fact,
parallel execution results in a massive slowdown over the sequen-
tial version for the Cell for any number of threads. On the Intel
Xeon platform, however, parallelization can be profitable, but this
depends strongly on the specific OpenMP scheduling policy. The
best scheme (“STATIC”) results in a speedup of 2.3 over the se-
quential code and performs 115 times better than the worst scheme
(“DYNAMIC”) that slows the program down to 2% of its original,
sequential performance. This example illustrates that selecting the
correct mapping scheme has a significant impact on performance.
However, the mapping scheme varies not only from program to pro-
gram, but also from architecture to architecture. Therefore, we need
an automatic and portable solution for parallelism mapping.

3. Parallelization Framework
In this section we give an overview and technical details of our
parallelization framework. As shown in figure 3 a sequential C pro-
gram is initially extended with plain, parallel OpenMP annotations
for parallel loops and reductions as a result of our profiling-based
dependence analysis. In addition, data scoping for shared and pri-
vate data also takes place at this stage. In a second step we add
further OpenMP work allocation clauses to the code if the loop is
predicted to benefit from parallelization, or otherwise remove the
parallel annotations. This also happens for loop candidates where
correctness cannot be proven conclusively and the user disapproves
with the parallelizer’s decision. Finally, the parallel code is com-
piled with a native OpenMP compiler for the target platform. A
complete overview of our tool-chain is shown in figure 4.

3.1 Profile-Driven Parallelism Detection
We propose a profile-driven approach to parallelism detection
where the traditional static compiler analyses are not replaced,
but enhanced with dynamic information. To achieve this we have
devised a novel instrumentation scheme operating at the interme-
diate representation (IR) level of the compiler. Unlike e.g. (20) we

Sequential
Code

Code with
Parallel 

Annotations

Code with
Extended 

Annotations

Profiling Based
Analysis

Machine-Learning
Based Mapping

Figure 3. Two-staged OpenMP parallelization using profiling-
driven parallelism detection and machine-learning based mapping.
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• SPEC equake

• Both loops are parallel

• Compilers don’t like

• Indirect accesses

• While loops

• Reductions over arrays

• ICC fails to detect any 
parallelism

SPEC equake (~75% of total exec. time)



Profile Driven 
Parallelism Detection

•Use of profiling to capture data and control flow

•Directly observe dependences ➙ accuracy

•But: Need to solve two important problems

•No general correctness proof

•May have missed dependences

•Assisted user validation ➙ semi-automatic

•Use low-level profiling information in compiler?

• Instrumentation of intermediate representation

•No actual ISA idiosyncracies



Approach

C Code Compiler Execute

Instrument 

Tracing

Parallel C 
CodeParallelise



Approach

• Instrument using high-level intermed. representation

•Access to source-level information 
(memory accesses, loops, induction/reduction vars)

•Avoids ISA obfuscation

•Execute natively

•Generates data and control flow traces

•Straightforward back-annotation

•References to symbol table, IR nodes

• Combination with conventional static analyses



PART 2:
MACHINE LEARNING 

BASED MAPPING



Motivating Example
Example 2

• NAS cg

• Simple parallel reduction

• IBM Cell

• Not profitable

• Intel Xeon

• 2.3x speedup for STATIC

• 50x slowdown for 
DYNAMIC

f o r ( i = 0 ; i < nodes ; i ++) {
Anext = Aindex [ i ] ;
A l a s t = Aindex [ i + 1 ] ;

sum0 = A[ Anext ] [ 0 ] [ 0 ] ∗ v [ i ] [ 0 ] +
A[ Anext ] [ 0 ] [ 1 ] ∗ v [ i ] [ 1 ] +
A[ Anext ] [ 0 ] [ 2 ] ∗ v [ i ] [ 2 ] ;

sum1 = . . .

Anext ++;
whi le ( Anext < A l a s t ) {

c o l = Acol [ Anext ] ;

sum0 += A[ Anext ] [ 0 ] [ 0 ] ∗ v [ c o l ] [ 0 ] +
A[ Anext ] [ 0 ] [ 1 ] ∗ v [ c o l ] [ 1 ] +
A[ Anext ] [ 0 ] [ 2 ] ∗ v [ c o l ] [ 2 ] ;

sum1 += . . .

w[ c o l ] [ 0 ] += A[ Anext ] [ 0 ] [ 0 ] ∗ v [ i ] [ 0 ] +
A[ Anext ] [ 1 ] [ 0 ] ∗ v [ i ] [ 1 ] +
A[ Anext ] [ 2 ] [ 0 ] ∗ v [ i ] [ 2 ] ;

w[ c o l ] [ 1 ] += . . .
Anext ++;

}
w[ i ] [ 0 ] += sum0 ;
w[ i ] [ 1 ] += . . .

}

Figure 1. Static analysis is challenged by sparse array reduction
operations and the inner while loop in the SPEC equake benchmark.

nificant improvements when compared with state-of-the-art paral-
lelizing compilers, but comes close and sometimes exceeds the per-
formance of manually parallelized codes. We show that profiling-
driven analyses can detect more parallel loops than static tech-
niques. A surprising result is that all loops classified as parallel
by our technique are correctly identified as such, despite the fact
that only a single, small data input is considered for parallelism
detection. Furthermore, we show that parallelism detection in iso-
lation is not sufficient to achieve high performance, and neither
are conventional mapping heuristics. Our machine-learning based
mapping approach provides the adaptivity across platforms that is
required for a genuinely portable parallelization strategy. On av-
erage, our methodology achieves 96% of the performance of the
hand-tuned OpenMP NAS and SPEC parallel benchmarks on the
Intel Xeon platform, and a significant speedup over manually par-
allelized codes for the Cell platform, demonstrating the potential
of profile-guided machine-learning based auto-parallelization for
complex multi-core platforms.

Overview. The remainder of this paper is structured as follows.
We motivate our work based on simple examples in section 2. This
is followed by a presentation of our parallelization framework in
section 3. Our experimental methodology and results are discussed
in sections 4 and 5, respectively. We establish a wider context of
related work in section 6 before we summarize and conclude in
section 7.

2. Motivation
Parallelism Detection. Figure 1 shows a short excerpt of the svmp
function of the SPEC equake benchmark that takes up more than
60% of the total execution time. While conservative static analysis
fails to parallelize both loops due to sparse matrix operations and
the inner while loop, profiling-based dependence analysis provides
us with the additional information that no actual data dependence
inhibits parallelization for a given sample input. While we still can-
not prove absence of data dependences for every possible input we

can classify both loops as candidates for parallelization (reduction)
and, if profitably parallelizable, present it to the user for approval.
This example demonstrates that static analysis is overly conserva-
tive. Profiling information, on the other hand, can provide accu-
rate dependence information for a specific input. When combined
we can select candidates for parallelization based on empirical ev-
idence and, hence, can eventually extract more application paral-
lelism than purely static approaches.

#pragma omp f o r r e d u c t i o n ( + : sum ) p r i v a t e ( d )
f o r ( j =1 ; j <= l a s t c o l −f i r s t c o l −1; j ++) {

d = x [ j ] − r [ j ] ;
sum = sum + d ∗ d ;

}

Figure 2. Complex mapping for the simple cg benchmark.

Mapping. In figure 2 a parallel reduction loop originating from
the parallel NAS cg benchmark is shown. Despite the simplicity of
the code, mapping decisions are non-trivial. For example, parallel
execution of this loop is not profitable for the Cell BE platform due
to high communication costs between processing elements. In fact,
parallel execution results in a massive slowdown over the sequen-
tial version for the Cell for any number of threads. On the Intel
Xeon platform, however, parallelization can be profitable, but this
depends strongly on the specific OpenMP scheduling policy. The
best scheme (“STATIC”) results in a speedup of 2.3 over the se-
quential code and performs 115 times better than the worst scheme
(“DYNAMIC”) that slows the program down to 2% of its original,
sequential performance. This example illustrates that selecting the
correct mapping scheme has a significant impact on performance.
However, the mapping scheme varies not only from program to pro-
gram, but also from architecture to architecture. Therefore, we need
an automatic and portable solution for parallelism mapping.

3. Parallelization Framework
In this section we give an overview and technical details of our
parallelization framework. As shown in figure 3 a sequential C pro-
gram is initially extended with plain, parallel OpenMP annotations
for parallel loops and reductions as a result of our profiling-based
dependence analysis. In addition, data scoping for shared and pri-
vate data also takes place at this stage. In a second step we add
further OpenMP work allocation clauses to the code if the loop is
predicted to benefit from parallelization, or otherwise remove the
parallel annotations. This also happens for loop candidates where
correctness cannot be proven conclusively and the user disapproves
with the parallelizer’s decision. Finally, the parallel code is com-
piled with a native OpenMP compiler for the target platform. A
complete overview of our tool-chain is shown in figure 4.

3.1 Profile-Driven Parallelism Detection
We propose a profile-driven approach to parallelism detection
where the traditional static compiler analyses are not replaced,
but enhanced with dynamic information. To achieve this we have
devised a novel instrumentation scheme operating at the interme-
diate representation (IR) level of the compiler. Unlike e.g. (20) we
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Figure 3. Two-staged OpenMP parallelization using profiling-
driven parallelism detection and machine-learning based mapping.
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Holistic Approach:
Detection & Mapping

Sequential
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OpenMP 
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Code with
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Conventional
Mapping Heuristics

NAS PB 2.3+SPEC FP2000
Intel Xeon X5450
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Figure 5. This diagrams shows the optimal classification (sequen-

tial/parallel execution) of all parallel loop candidates considered in

our experiments for the Intel Xeon machine. Linear models and

static features such as the iteration count and size of the loop body

in terms of IR statements are not suitable for separating profitably

parallelizable loops from those that are not.

A simple work based scheme would attempt to separate the prof-

itably parallelizable loops by a diagonal line as indicated in the

diagram in figure 5. Independent of where exactly the line is drawn

there will always be loops misclassified and, hence, potential per-

formance benefits wasted. What is needed is a scheme that (a) takes

into account a richer set of – possibly dynamic – loop features, (b)

is capable of non-linear classification, and (c) can be easily adapted

to a new platform.

In this paper we propose a predictive modeling approach based

on machine-learning classification. In particular, we use Support
Vector Machines (SVM) (24) to decide (a) whether or not to paral-

lelize a loop candidate and (b) how it should be scheduled. The

SVM classifier is used to construct hyper-planes in the multi-

dimensional space of program features – as discussed in the fol-

lowing paragraph – to identify profitably parallelizable loops. The

classifier implements a multi-class SVM model with a radial basis
function (RBF) kernel capable of handling both linear and non-

linear classification problems (24). The details of our SVM classi-

fier are provided in figure 6.

3.2.2 Program Features
We extract characteristic program features that sufficiently describe

the relevant aspects of a program and present it to the SVM clas-

sifier. An overview of these features is given in table 1. The static
features are derived from CoSy’s internal code representation. Es-

sentially, these features characterize the amount of work carried

out in the parallel loop similar to e.g. (25). The dynamic features
capture the dynamic data access and control flow patterns of the

Static features
IR Instruction Count

IR Load/Store Count

IR Branch Count

Loop Iteration Count

Dynamic features
Data Access Count

Instruction Count

Branch Count

Table 1. Features characterizing each parallelizable loop.

1. Baseline SVM for classification

(a) Training data:

D = {(xi, ci)|xi ∈ Rp, ci ∈ {−1, 1}}n
i=1

(b) Maximum-margin hyperplane formulation:

ci(w · xi − b) ≥ 1, for all 1 ≤ i ≤ n.

(c) Determine parameters by minimization of ||w|| (in w, b)

subject to 1.(b).

2. Extensions for non-linear multiclass classification

(a) Non-linear classification:

Replace dot product in 1.(b) by a kernel function, e.g. the

following radial basis function:

k(x, x�) = exp(−γ||x − x�||2), for γ > 0.

(b) Multiclass SVM:

Reduce single multiclass problem into multiple binary prob-

lems. Each classifier distinguishes between one of the labels

and the rest.

Figure 6. Support vector machines for non-linear classification.

sequential program and are obtained from the same profiling exe-

cution that has been used for parallelism detection.

3.2.3 Training Summary
We use an off-line supervised learning scheme whereby we present

the machine learning component with pairs of program features

and desired mapping decisions. These are generated from a library

of known parallelizable loops through repeated, timed execution

of the sequential and parallel code with the different available

scheduling options and recording the actual performance on the

target platform. Once the prediction model has been built using all

the available training data, no further learning takes place.

3.2.4 Deployment
For a new, previously unseen application with parallel annotations

the following steps need to be carried out:

1. Feature extraction. This involves collecting the features shown

in table 1 from the sequential version of the program and is

accomplished in the profiling stage already used for parallelism

detection.

2. Prediction. For each parallel loop candidate the corresponding

feature set is presented to the SVM predictor and it returns a

classification indicating if parallel execution is profitable and

which scheduling policy to choose. For a loop nest we start with

the outermost loop ensuring that we settle for the most coarse-

grained piece of work.

3. User Interaction. If parallelization appears to possible (accord-

ing to the initial profiling) and profitable (according to the previ-

ous prediction step), but correctness cannot be proven by static

analysis, we ask the user for his/her final approval.

4. Code Generation. In this step, we extend the existing OpenMP

annotation with the appropriate scheduling clause, or delete the

annotation if parallelization does not promise any performance

improvement or has been rejected by the user.

3.3 Safety and Scalability Issues
Safety. Unlike static analysis, profile-guided parallelization can-

not conclusively guarantee the absence of control and data depen-

dences for every possible input. One simple approach regarding

the selection of the “representative” inputs is based on control-flow

Static not 
suitable for 
separation.

Linear models 
not adequate 

either!



Machine Learning
Based Mapping

• Off-line learning

• Predict using smallest input

FeaturesFeatures

Static
IR instruction count
IR Load/Store count
IR Branch count
Loop iteration count

Dynamic
Data access count
Instruction count
Branch count

new

program

Feature

extraction

smallest

input

Trained 

model

profitable or not

scheduling policy



Predictive Modelling

Support Vector Machine (SVM)

- Decide (i) profitability, (ii) loop scheduling

- Hyperplanes in transformed higher-dimensional space

- Non-linear & multi-class extensions

feature 1

fe
a

tu
re

 2

feature 1

fe
a

tu
re

 2

e.g. f' = f * X - b

hyper-plane 1



Experimental Evaluation

• 2 sets of applications

• NAS Parallel Benchmarks 2.3

• SPEC FP2000

• Sequential code in C

• Manually parallelized using OpenMP by expert 
programmers

• Use of multiple input datasets



Parallelism Coverage

• Profile-driven: almost no lost opportunities

Application FP FN
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Parallelism Coverage

Application FP FN
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• MG: 3 loops never execute for all inputs

• ammp: critical loops require reshaping & locking



Parallelism Coverage

• ICC finds many parallel loops

Applicatio
n

iccicc Profile-drivenProfile-driven ManualManual
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)

69 (98.1%)
)

11 (98.0%)
)16 (30.0%)

)
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)
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)43 (<1%) 21 (1.40%) 7 (84.4%)



Parallelism Coverage

• BUT: low sequential time coverage

• ICC: majority of loops too short to be profitable
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Parallelism Coverage

• Profile-driven: coverage close to manually 
parallelized
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Parallelism Coverage

• ammp: we fail to parallelize the critical loop

Applicatio
n

iccicc Profile-drivenProfile-driven ManualManual
#loops(%cov)#loops(%cov) #loops(%cov)#loops(%cov) #loops(%cov)#loops(%cov)

bt
cg
ep
ft
is
lu
mg
sp

equake
art

ammp

72 (18.6%)
)

205 (99.9%) 54 (99.9%)
16 (1.10%)

)
28 (93.1%) 22 (93.1%)

6 (<1%) 8 (99.9%)
)

1 (99.9%)
)3 (<1%) 37 (88.2%) 6 (88.2%)

8 (29.4%)
)

9 (28.5%)
)

1 (27.3%)
)88 (65.9%)

)
54 (99.7%)

)
29 (81.5%)

)9 (4.70%)
)

48 (77.7%)
)

12
70
11

(77.7%)
)178 (88.0%)

)
287 (99.6%)

)
70 (61.8%)

)29 (23.8%)
)

69 (98.1%)
)

11 (98.0%)
)16 (30.0%)

)
31 (85.6%)

)
5 (65.0%)

)43 (<1%) 21 (1.40%) 7 (84.4%)



Safety

• Inherently unsafe, but surprisingly no FP

• Even when trained on the smallest dataset
Application FP FN
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Speedup (Intel Xeon)

• Intel ICC fails to deliver any performance gain

• Even slowdown for some benchmarks
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 ICC  Manual Parallelization  Prof-driven Parallelization

(a) Speedup over sequential codes achieved by ICC auto-parallelization, manual parallelization and profile-driven parallelization for the Xeon platform.
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 Manual Parallelization  Prof-driven Parallelization

(b) Speedup over sequential code achieved by manual parallelization and profile-driven parallelization for the dual Cell platform.

Figure 7. Speedups due to different parallelization schemes.

Profile driven ICC no threshold Manual

Application #loops(%cov) FP FN #loops(%cov) #loops(%cov)

bt 205 (99.9%) 0 0 72 (18.6%) 54 (99.9%)

cg 28 (93.1%) 0 0 16 (1.1%) 22 (93.1%)

ep 8 (99.9%) 0 0 6 (<1%) 1 (99.9%)

ft 37 (88.2%) 0 0 3 (<1%) 6 (88.2%)

is 9 (28.5%) 0 0 8 (29.4%) 1 (27.3%)

lu 154 (99.7%) 0 0 88 (65.9%) 29 (81.5%)

mg 48 (77.7%) 0 3 9 (4.7%) 12 (77.7%)

sp 287 (99.6%) 0 0 178 (88.0%) 70 (61.8%)

equake SEQ 69 (98.1%) 0 0 29 (23.8%) 11 (98.0%)

art SEQ 31 (85.6%) 0 0 16 (30.0%) 5 (65.0%)

ammp SEQ 21 (1.4%) 0 1 43 (<1%) 7 (84.4%)

Table 4. Number of parallelized loops and their respective cover-

age of the sequential execution time.

cover a significant part of the sequential time and effective par-

allelization leads to good performance as can be seen for the Xeon

platform.

In total there are four false negatives (column FN in table 5.2) ,

i.e. loops not identified as parallel although safely parallelizable.

Three false negatives are contained in the MG benchmark, and

two of these are due to loops which have zero iteration counts for

all data sets and, therefore, are never profiled. The third one is a

MAX reduction, which is contained inside a loop that our machine-

learning classifier has decided not to parallelize.

5.3 Parallelism Mapping
In this section we examine the effectiveness of three mapping

schemes (manual, heuristic with static features, and machine-

learning using profiling information) across the two platforms.

Intel Xeon. Figure 8(a) compares the performance of ICC and

our approach to that of the hand-parallelized OpenMP programs. In

the case of ICC we show the performance of two different mapping

approaches. By default, ICC employs a compile-time profitability

check while the second approach performs a runtime check using a

dynamic profitability threshold.

For some cases (BT.B and SP.B) the runtime checks provide

a marginal improvement over the static mapping scheme while

the static scheme is better for IS.B. Overall, both schemes are

equally poor and deliver less than half of the speedup levels of

the hand-parallelized benchmarks. The disappointing performance

appears to be largely due to non-optimal mapping decisions, i.e. to

parallelize inner loops rather than outer ones.

In the same figure we compare our machine-learning based

mapping approach against a scheme which uses the same profiling

information, but employs a fixed, work-based heuristic similar to

the one implemented in the SUIF-1 parallelizing compiler (see

also figure 5). This heuristic considers the product of the iteration

count and the number of instructions contained in the loop body

and decides against a static threshold. While our machine-learning

approach delivers nearly the performance of the hand-parallelized

codes and, in some cases, is able to outperform them, the static

heuristic performs poorly and is unable to obtain more than 85% of

the performance of the hand-parallelized code. This translates into

an average speedup of 2.5 rather than 3.7 for the NAS benchmarks.

The main reason for this performance loss is that the default scheme

using only static code features and a linear work model is unable to

accurately determine whether a loop should be parallelized or not.

In figure 9 we compare the performance resulting from the

different automated mapping approaches to that of the hand-

parallelized SPEC OMP codes. Again, our machine-learning based

approach outperforms ICC and the fixed heuristic. On average, our
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Speedup (Intel Xeon)

• Profile-driven parallelization achieves 96% of the 
performance of manually parallelized benchmarks!
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 ICC  Manual Parallelization  Prof-driven Parallelization

(a) Speedup over sequential codes achieved by ICC auto-parallelization, manual parallelization and profile-driven parallelization for the Xeon platform.
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 Manual Parallelization  Prof-driven Parallelization

(b) Speedup over sequential code achieved by manual parallelization and profile-driven parallelization for the dual Cell platform.

Figure 7. Speedups due to different parallelization schemes.

Profile driven ICC no threshold Manual

Application #loops(%cov) FP FN #loops(%cov) #loops(%cov)

bt 205 (99.9%) 0 0 72 (18.6%) 54 (99.9%)

cg 28 (93.1%) 0 0 16 (1.1%) 22 (93.1%)

ep 8 (99.9%) 0 0 6 (<1%) 1 (99.9%)

ft 37 (88.2%) 0 0 3 (<1%) 6 (88.2%)

is 9 (28.5%) 0 0 8 (29.4%) 1 (27.3%)

lu 154 (99.7%) 0 0 88 (65.9%) 29 (81.5%)

mg 48 (77.7%) 0 3 9 (4.7%) 12 (77.7%)

sp 287 (99.6%) 0 0 178 (88.0%) 70 (61.8%)

equake SEQ 69 (98.1%) 0 0 29 (23.8%) 11 (98.0%)

art SEQ 31 (85.6%) 0 0 16 (30.0%) 5 (65.0%)

ammp SEQ 21 (1.4%) 0 1 43 (<1%) 7 (84.4%)

Table 4. Number of parallelized loops and their respective cover-

age of the sequential execution time.

cover a significant part of the sequential time and effective par-

allelization leads to good performance as can be seen for the Xeon

platform.

In total there are four false negatives (column FN in table 5.2) ,

i.e. loops not identified as parallel although safely parallelizable.

Three false negatives are contained in the MG benchmark, and

two of these are due to loops which have zero iteration counts for

all data sets and, therefore, are never profiled. The third one is a

MAX reduction, which is contained inside a loop that our machine-

learning classifier has decided not to parallelize.

5.3 Parallelism Mapping
In this section we examine the effectiveness of three mapping

schemes (manual, heuristic with static features, and machine-

learning using profiling information) across the two platforms.

Intel Xeon. Figure 8(a) compares the performance of ICC and

our approach to that of the hand-parallelized OpenMP programs. In

the case of ICC we show the performance of two different mapping

approaches. By default, ICC employs a compile-time profitability

check while the second approach performs a runtime check using a

dynamic profitability threshold.

For some cases (BT.B and SP.B) the runtime checks provide

a marginal improvement over the static mapping scheme while

the static scheme is better for IS.B. Overall, both schemes are

equally poor and deliver less than half of the speedup levels of

the hand-parallelized benchmarks. The disappointing performance

appears to be largely due to non-optimal mapping decisions, i.e. to

parallelize inner loops rather than outer ones.

In the same figure we compare our machine-learning based

mapping approach against a scheme which uses the same profiling

information, but employs a fixed, work-based heuristic similar to

the one implemented in the SUIF-1 parallelizing compiler (see

also figure 5). This heuristic considers the product of the iteration

count and the number of instructions contained in the loop body

and decides against a static threshold. While our machine-learning

approach delivers nearly the performance of the hand-parallelized

codes and, in some cases, is able to outperform them, the static

heuristic performs poorly and is unable to obtain more than 85% of

the performance of the hand-parallelized code. This translates into

an average speedup of 2.5 rather than 3.7 for the NAS benchmarks.

The main reason for this performance loss is that the default scheme

using only static code features and a linear work model is unable to

accurately determine whether a loop should be parallelized or not.

In figure 9 we compare the performance resulting from the

different automated mapping approaches to that of the hand-

parallelized SPEC OMP codes. Again, our machine-learning based

approach outperforms ICC and the fixed heuristic. On average, our
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• EP is embarrassingly parallel, still ICC fails completely

• Profile-driven parallelisation detects critical loop
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 ICC  Manual Parallelization  Prof-driven Parallelization

(a) Speedup over sequential codes achieved by ICC auto-parallelization, manual parallelization and profile-driven parallelization for the Xeon platform.
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 Manual Parallelization  Prof-driven Parallelization

(b) Speedup over sequential code achieved by manual parallelization and profile-driven parallelization for the dual Cell platform.

Figure 7. Speedups due to different parallelization schemes.

Profile driven ICC no threshold Manual

Application #loops(%cov) FP FN #loops(%cov) #loops(%cov)

bt 205 (99.9%) 0 0 72 (18.6%) 54 (99.9%)

cg 28 (93.1%) 0 0 16 (1.1%) 22 (93.1%)

ep 8 (99.9%) 0 0 6 (<1%) 1 (99.9%)

ft 37 (88.2%) 0 0 3 (<1%) 6 (88.2%)

is 9 (28.5%) 0 0 8 (29.4%) 1 (27.3%)

lu 154 (99.7%) 0 0 88 (65.9%) 29 (81.5%)

mg 48 (77.7%) 0 3 9 (4.7%) 12 (77.7%)

sp 287 (99.6%) 0 0 178 (88.0%) 70 (61.8%)

equake SEQ 69 (98.1%) 0 0 29 (23.8%) 11 (98.0%)

art SEQ 31 (85.6%) 0 0 16 (30.0%) 5 (65.0%)

ammp SEQ 21 (1.4%) 0 1 43 (<1%) 7 (84.4%)

Table 4. Number of parallelized loops and their respective cover-

age of the sequential execution time.

cover a significant part of the sequential time and effective par-

allelization leads to good performance as can be seen for the Xeon

platform.

In total there are four false negatives (column FN in table 5.2) ,

i.e. loops not identified as parallel although safely parallelizable.

Three false negatives are contained in the MG benchmark, and

two of these are due to loops which have zero iteration counts for

all data sets and, therefore, are never profiled. The third one is a

MAX reduction, which is contained inside a loop that our machine-

learning classifier has decided not to parallelize.

5.3 Parallelism Mapping
In this section we examine the effectiveness of three mapping

schemes (manual, heuristic with static features, and machine-

learning using profiling information) across the two platforms.

Intel Xeon. Figure 8(a) compares the performance of ICC and

our approach to that of the hand-parallelized OpenMP programs. In

the case of ICC we show the performance of two different mapping

approaches. By default, ICC employs a compile-time profitability

check while the second approach performs a runtime check using a

dynamic profitability threshold.

For some cases (BT.B and SP.B) the runtime checks provide

a marginal improvement over the static mapping scheme while

the static scheme is better for IS.B. Overall, both schemes are

equally poor and deliver less than half of the speedup levels of

the hand-parallelized benchmarks. The disappointing performance

appears to be largely due to non-optimal mapping decisions, i.e. to

parallelize inner loops rather than outer ones.

In the same figure we compare our machine-learning based

mapping approach against a scheme which uses the same profiling

information, but employs a fixed, work-based heuristic similar to

the one implemented in the SUIF-1 parallelizing compiler (see

also figure 5). This heuristic considers the product of the iteration

count and the number of instructions contained in the loop body

and decides against a static threshold. While our machine-learning

approach delivers nearly the performance of the hand-parallelized

codes and, in some cases, is able to outperform them, the static

heuristic performs poorly and is unable to obtain more than 85% of

the performance of the hand-parallelized code. This translates into

an average speedup of 2.5 rather than 3.7 for the NAS benchmarks.

The main reason for this performance loss is that the default scheme

using only static code features and a linear work model is unable to

accurately determine whether a loop should be parallelized or not.

In figure 9 we compare the performance resulting from the

different automated mapping approaches to that of the hand-

parallelized SPEC OMP codes. Again, our machine-learning based

approach outperforms ICC and the fixed heuristic. On average, our
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• SPECOMP 2001 benchmarks include additional 
sequential optimisations besides parallelisation
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 ICC  Manual Parallelization  Prof-driven Parallelization

(a) Speedup over sequential codes achieved by ICC auto-parallelization, manual parallelization and profile-driven parallelization for the Xeon platform.
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 Manual Parallelization  Prof-driven Parallelization

(b) Speedup over sequential code achieved by manual parallelization and profile-driven parallelization for the dual Cell platform.

Figure 7. Speedups due to different parallelization schemes.

Profile driven ICC no threshold Manual

Application #loops(%cov) FP FN #loops(%cov) #loops(%cov)

bt 205 (99.9%) 0 0 72 (18.6%) 54 (99.9%)

cg 28 (93.1%) 0 0 16 (1.1%) 22 (93.1%)

ep 8 (99.9%) 0 0 6 (<1%) 1 (99.9%)

ft 37 (88.2%) 0 0 3 (<1%) 6 (88.2%)

is 9 (28.5%) 0 0 8 (29.4%) 1 (27.3%)

lu 154 (99.7%) 0 0 88 (65.9%) 29 (81.5%)

mg 48 (77.7%) 0 3 9 (4.7%) 12 (77.7%)

sp 287 (99.6%) 0 0 178 (88.0%) 70 (61.8%)

equake SEQ 69 (98.1%) 0 0 29 (23.8%) 11 (98.0%)

art SEQ 31 (85.6%) 0 0 16 (30.0%) 5 (65.0%)

ammp SEQ 21 (1.4%) 0 1 43 (<1%) 7 (84.4%)

Table 4. Number of parallelized loops and their respective cover-

age of the sequential execution time.

cover a significant part of the sequential time and effective par-

allelization leads to good performance as can be seen for the Xeon

platform.

In total there are four false negatives (column FN in table 5.2) ,

i.e. loops not identified as parallel although safely parallelizable.

Three false negatives are contained in the MG benchmark, and

two of these are due to loops which have zero iteration counts for

all data sets and, therefore, are never profiled. The third one is a

MAX reduction, which is contained inside a loop that our machine-

learning classifier has decided not to parallelize.

5.3 Parallelism Mapping
In this section we examine the effectiveness of three mapping

schemes (manual, heuristic with static features, and machine-

learning using profiling information) across the two platforms.

Intel Xeon. Figure 8(a) compares the performance of ICC and

our approach to that of the hand-parallelized OpenMP programs. In

the case of ICC we show the performance of two different mapping

approaches. By default, ICC employs a compile-time profitability

check while the second approach performs a runtime check using a

dynamic profitability threshold.

For some cases (BT.B and SP.B) the runtime checks provide

a marginal improvement over the static mapping scheme while

the static scheme is better for IS.B. Overall, both schemes are

equally poor and deliver less than half of the speedup levels of

the hand-parallelized benchmarks. The disappointing performance

appears to be largely due to non-optimal mapping decisions, i.e. to

parallelize inner loops rather than outer ones.

In the same figure we compare our machine-learning based

mapping approach against a scheme which uses the same profiling

information, but employs a fixed, work-based heuristic similar to

the one implemented in the SUIF-1 parallelizing compiler (see

also figure 5). This heuristic considers the product of the iteration

count and the number of instructions contained in the loop body

and decides against a static threshold. While our machine-learning

approach delivers nearly the performance of the hand-parallelized

codes and, in some cases, is able to outperform them, the static

heuristic performs poorly and is unable to obtain more than 85% of

the performance of the hand-parallelized code. This translates into

an average speedup of 2.5 rather than 3.7 for the NAS benchmarks.

The main reason for this performance loss is that the default scheme

using only static code features and a linear work model is unable to

accurately determine whether a loop should be parallelized or not.

In figure 9 we compare the performance resulting from the

different automated mapping approaches to that of the hand-

parallelized SPEC OMP codes. Again, our machine-learning based

approach outperforms ICC and the fixed heuristic. On average, our
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• SPECOMP single-threaded has average speedup of 
2x over SPECFP due to sequential optimisations
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 ICC  Manual Parallelization  Prof-driven Parallelization

(a) Speedup over sequential codes achieved by ICC auto-parallelization, manual parallelization and profile-driven parallelization for the Xeon platform.
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 Manual Parallelization  Prof-driven Parallelization

(b) Speedup over sequential code achieved by manual parallelization and profile-driven parallelization for the dual Cell platform.

Figure 7. Speedups due to different parallelization schemes.

Profile driven ICC no threshold Manual

Application #loops(%cov) FP FN #loops(%cov) #loops(%cov)

bt 205 (99.9%) 0 0 72 (18.6%) 54 (99.9%)

cg 28 (93.1%) 0 0 16 (1.1%) 22 (93.1%)

ep 8 (99.9%) 0 0 6 (<1%) 1 (99.9%)

ft 37 (88.2%) 0 0 3 (<1%) 6 (88.2%)

is 9 (28.5%) 0 0 8 (29.4%) 1 (27.3%)

lu 154 (99.7%) 0 0 88 (65.9%) 29 (81.5%)

mg 48 (77.7%) 0 3 9 (4.7%) 12 (77.7%)

sp 287 (99.6%) 0 0 178 (88.0%) 70 (61.8%)

equake SEQ 69 (98.1%) 0 0 29 (23.8%) 11 (98.0%)

art SEQ 31 (85.6%) 0 0 16 (30.0%) 5 (65.0%)

ammp SEQ 21 (1.4%) 0 1 43 (<1%) 7 (84.4%)

Table 4. Number of parallelized loops and their respective cover-

age of the sequential execution time.

cover a significant part of the sequential time and effective par-

allelization leads to good performance as can be seen for the Xeon

platform.

In total there are four false negatives (column FN in table 5.2) ,

i.e. loops not identified as parallel although safely parallelizable.

Three false negatives are contained in the MG benchmark, and

two of these are due to loops which have zero iteration counts for

all data sets and, therefore, are never profiled. The third one is a

MAX reduction, which is contained inside a loop that our machine-

learning classifier has decided not to parallelize.

5.3 Parallelism Mapping
In this section we examine the effectiveness of three mapping

schemes (manual, heuristic with static features, and machine-

learning using profiling information) across the two platforms.

Intel Xeon. Figure 8(a) compares the performance of ICC and

our approach to that of the hand-parallelized OpenMP programs. In

the case of ICC we show the performance of two different mapping

approaches. By default, ICC employs a compile-time profitability

check while the second approach performs a runtime check using a

dynamic profitability threshold.

For some cases (BT.B and SP.B) the runtime checks provide

a marginal improvement over the static mapping scheme while

the static scheme is better for IS.B. Overall, both schemes are

equally poor and deliver less than half of the speedup levels of

the hand-parallelized benchmarks. The disappointing performance

appears to be largely due to non-optimal mapping decisions, i.e. to

parallelize inner loops rather than outer ones.

In the same figure we compare our machine-learning based

mapping approach against a scheme which uses the same profiling

information, but employs a fixed, work-based heuristic similar to

the one implemented in the SUIF-1 parallelizing compiler (see

also figure 5). This heuristic considers the product of the iteration

count and the number of instructions contained in the loop body

and decides against a static threshold. While our machine-learning

approach delivers nearly the performance of the hand-parallelized

codes and, in some cases, is able to outperform them, the static

heuristic performs poorly and is unable to obtain more than 85% of

the performance of the hand-parallelized code. This translates into

an average speedup of 2.5 rather than 3.7 for the NAS benchmarks.

The main reason for this performance loss is that the default scheme

using only static code features and a linear work model is unable to

accurately determine whether a loop should be parallelized or not.

In figure 9 we compare the performance resulting from the

different automated mapping approaches to that of the hand-

parallelized SPEC OMP codes. Again, our machine-learning based

approach outperforms ICC and the fixed heuristic. On average, our

NAS PB

SPECOMP

Speedup (Intel Xeon)



• ammp: critical loop not parallelised by profile-driven 
technique. Misclassification by ML.

• Manual parallelisation: 1.6x on 8 cores

35

B
T
.S

B
T
.W

B
T
.A

B
T
.B

C
G
.S

C
G
.W

C
G
.A

C
G
.B

E
P
.S

E
P
.W

E
P
.A

E
P
.B

F
T
.S

F
T
.W

F
T
.A

F
T
.B

IS
.S

IS
.W

IS
.A

IS
.B

L
U
.S

L
U
.W

L
U
.A

L
U
.B

M
G
.S

M
G
.W

M
G
.A

M
G
.B

S
P
.S

S
P
.W

S
P
.A

S
P
.B

a
m
m
p
.t
e
s
t

a
m
m
p
.t
ra
in

a
m
m
p
.r
e
f

a
rt
.t
e
s
t

a
rt
.t
ra
in

a
rt
.r
e
f

e
q
u
a
k
e
.t
e
s
t

e
q
u
a
k
e
.t
ra
in

e
q
u
a
k
e
.r
e
f

A
V
E
R
A
G
E

0
1
2
3
4
5
6
7
8
9

S
p
e
e
d
u
p

 

 ICC  Manual Parallelization  Prof-driven Parallelization

(a) Speedup over sequential codes achieved by ICC auto-parallelization, manual parallelization and profile-driven parallelization for the Xeon platform.
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 Manual Parallelization  Prof-driven Parallelization

(b) Speedup over sequential code achieved by manual parallelization and profile-driven parallelization for the dual Cell platform.

Figure 7. Speedups due to different parallelization schemes.

Profile driven ICC no threshold Manual

Application #loops(%cov) FP FN #loops(%cov) #loops(%cov)

bt 205 (99.9%) 0 0 72 (18.6%) 54 (99.9%)

cg 28 (93.1%) 0 0 16 (1.1%) 22 (93.1%)

ep 8 (99.9%) 0 0 6 (<1%) 1 (99.9%)

ft 37 (88.2%) 0 0 3 (<1%) 6 (88.2%)

is 9 (28.5%) 0 0 8 (29.4%) 1 (27.3%)

lu 154 (99.7%) 0 0 88 (65.9%) 29 (81.5%)

mg 48 (77.7%) 0 3 9 (4.7%) 12 (77.7%)

sp 287 (99.6%) 0 0 178 (88.0%) 70 (61.8%)

equake SEQ 69 (98.1%) 0 0 29 (23.8%) 11 (98.0%)

art SEQ 31 (85.6%) 0 0 16 (30.0%) 5 (65.0%)

ammp SEQ 21 (1.4%) 0 1 43 (<1%) 7 (84.4%)

Table 4. Number of parallelized loops and their respective cover-

age of the sequential execution time.

cover a significant part of the sequential time and effective par-

allelization leads to good performance as can be seen for the Xeon

platform.

In total there are four false negatives (column FN in table 5.2) ,

i.e. loops not identified as parallel although safely parallelizable.

Three false negatives are contained in the MG benchmark, and

two of these are due to loops which have zero iteration counts for

all data sets and, therefore, are never profiled. The third one is a

MAX reduction, which is contained inside a loop that our machine-

learning classifier has decided not to parallelize.

5.3 Parallelism Mapping
In this section we examine the effectiveness of three mapping

schemes (manual, heuristic with static features, and machine-

learning using profiling information) across the two platforms.

Intel Xeon. Figure 8(a) compares the performance of ICC and

our approach to that of the hand-parallelized OpenMP programs. In

the case of ICC we show the performance of two different mapping

approaches. By default, ICC employs a compile-time profitability

check while the second approach performs a runtime check using a

dynamic profitability threshold.

For some cases (BT.B and SP.B) the runtime checks provide

a marginal improvement over the static mapping scheme while

the static scheme is better for IS.B. Overall, both schemes are

equally poor and deliver less than half of the speedup levels of

the hand-parallelized benchmarks. The disappointing performance

appears to be largely due to non-optimal mapping decisions, i.e. to

parallelize inner loops rather than outer ones.

In the same figure we compare our machine-learning based

mapping approach against a scheme which uses the same profiling

information, but employs a fixed, work-based heuristic similar to

the one implemented in the SUIF-1 parallelizing compiler (see

also figure 5). This heuristic considers the product of the iteration

count and the number of instructions contained in the loop body

and decides against a static threshold. While our machine-learning

approach delivers nearly the performance of the hand-parallelized

codes and, in some cases, is able to outperform them, the static

heuristic performs poorly and is unable to obtain more than 85% of

the performance of the hand-parallelized code. This translates into

an average speedup of 2.5 rather than 3.7 for the NAS benchmarks.

The main reason for this performance loss is that the default scheme

using only static code features and a linear work model is unable to

accurately determine whether a loop should be parallelized or not.

In figure 9 we compare the performance resulting from the

different automated mapping approaches to that of the hand-

parallelized SPEC OMP codes. Again, our machine-learning based

approach outperforms ICC and the fixed heuristic. On average, our
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• SPECOMP.art 3.34x with 1 thread

• Profile-driven parallelisation delivers 4x speedup 
without sequential optimisation
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 ICC  Manual Parallelization  Prof-driven Parallelization

(a) Speedup over sequential codes achieved by ICC auto-parallelization, manual parallelization and profile-driven parallelization for the Xeon platform.
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 Manual Parallelization  Prof-driven Parallelization

(b) Speedup over sequential code achieved by manual parallelization and profile-driven parallelization for the dual Cell platform.

Figure 7. Speedups due to different parallelization schemes.

Profile driven ICC no threshold Manual

Application #loops(%cov) FP FN #loops(%cov) #loops(%cov)

bt 205 (99.9%) 0 0 72 (18.6%) 54 (99.9%)

cg 28 (93.1%) 0 0 16 (1.1%) 22 (93.1%)

ep 8 (99.9%) 0 0 6 (<1%) 1 (99.9%)

ft 37 (88.2%) 0 0 3 (<1%) 6 (88.2%)

is 9 (28.5%) 0 0 8 (29.4%) 1 (27.3%)

lu 154 (99.7%) 0 0 88 (65.9%) 29 (81.5%)

mg 48 (77.7%) 0 3 9 (4.7%) 12 (77.7%)

sp 287 (99.6%) 0 0 178 (88.0%) 70 (61.8%)

equake SEQ 69 (98.1%) 0 0 29 (23.8%) 11 (98.0%)

art SEQ 31 (85.6%) 0 0 16 (30.0%) 5 (65.0%)

ammp SEQ 21 (1.4%) 0 1 43 (<1%) 7 (84.4%)

Table 4. Number of parallelized loops and their respective cover-

age of the sequential execution time.

cover a significant part of the sequential time and effective par-

allelization leads to good performance as can be seen for the Xeon

platform.

In total there are four false negatives (column FN in table 5.2) ,

i.e. loops not identified as parallel although safely parallelizable.

Three false negatives are contained in the MG benchmark, and

two of these are due to loops which have zero iteration counts for

all data sets and, therefore, are never profiled. The third one is a

MAX reduction, which is contained inside a loop that our machine-

learning classifier has decided not to parallelize.

5.3 Parallelism Mapping
In this section we examine the effectiveness of three mapping

schemes (manual, heuristic with static features, and machine-

learning using profiling information) across the two platforms.

Intel Xeon. Figure 8(a) compares the performance of ICC and

our approach to that of the hand-parallelized OpenMP programs. In

the case of ICC we show the performance of two different mapping

approaches. By default, ICC employs a compile-time profitability

check while the second approach performs a runtime check using a

dynamic profitability threshold.

For some cases (BT.B and SP.B) the runtime checks provide

a marginal improvement over the static mapping scheme while

the static scheme is better for IS.B. Overall, both schemes are

equally poor and deliver less than half of the speedup levels of

the hand-parallelized benchmarks. The disappointing performance

appears to be largely due to non-optimal mapping decisions, i.e. to

parallelize inner loops rather than outer ones.

In the same figure we compare our machine-learning based

mapping approach against a scheme which uses the same profiling

information, but employs a fixed, work-based heuristic similar to

the one implemented in the SUIF-1 parallelizing compiler (see

also figure 5). This heuristic considers the product of the iteration

count and the number of instructions contained in the loop body

and decides against a static threshold. While our machine-learning

approach delivers nearly the performance of the hand-parallelized

codes and, in some cases, is able to outperform them, the static

heuristic performs poorly and is unable to obtain more than 85% of

the performance of the hand-parallelized code. This translates into

an average speedup of 2.5 rather than 3.7 for the NAS benchmarks.

The main reason for this performance loss is that the default scheme

using only static code features and a linear work model is unable to

accurately determine whether a loop should be parallelized or not.

In figure 9 we compare the performance resulting from the

different automated mapping approaches to that of the hand-

parallelized SPEC OMP codes. Again, our machine-learning based

approach outperforms ICC and the fixed heuristic. On average, our
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PART 3:
EXTRACTION OF 

PIPELINE PARALLELISM



Observations
•There is more parallelism available beyond 

parallel FOR loops
• Programmers exploit coarse-grained parallelism 

routinely

•Auto-parallelising compilers don’t!

•Parallel Design Patterns
• Static: Pipelines, Task Graphs

•Dynamic: Task Farms, Divide & Conquer, ...

•Serious Programme Restructuring Required
• Let’s Do It!



Motivating Example
1 while (end) {
2 /∗ . . . input . . . ∗/
3 decode info(&bs , &fr ps ) ;
4 /∗ . . . input . . . ∗/
5 I I I ge t s ide info(&bs , &III s ide info , &fr ps ) ;

7 for ( gr = 0; gr < max gr ; gr++) {
8 for (ch = 0; ch < stereo ; ch++) {
9 I I I ge t sca le fac tors ( gr , ch , . . . ) ;

10 III hufman decode (gr , ch , . . . ) ;
11 III dequantize sample (gr , ch , . . . ) ;
12 } /∗ ch ∗/

14 I I I s te reo (gr , . . . ) ;

16 for (ch = 0; ch < stereo ; ch++) {
17 I I I reorder (ch , gr , . . . ) ;
18 I I I a n t i a l i a s (ch , gr , . . . ) ;

20 for ( sb = 0; sb < SBLIMIT; sb++) {
21 III hybrid (sb , ch , . . . ) ;
22 } /∗ ss ∗/

24 for ( ss = 0; ss < SSLIMIT; ss++) {
25 for ( sb = 0; sb < SBLIMIT; sb++) {
26 i f ( ( ss % 2) && (sb % 2))
27 polyPhaseIn [ sb ] = −hybridOut [ sb ] [ ss ] ;
28 else
29 polyPhaseIn [ sb ] = hybridOut [ sb ] [ ss ] ;
30 } /∗ sb ∗/
31 cl ip += SubBandSynthesis (ch , ss , . . . ) ;
32 } /∗ ss ∗/
33 } /∗ ch ∗/
34 } /∗ gr ∗/

36 out f i fo (∗pcm sample , . . . ) ;
37 } /∗ while ∗/

EEMBC mp3player

reorder <1%

dequantize 44%

stereo <1%

hybrid 22%

subband

synthesis
24%

output 2%

antialias <1%

Huffman

decoding 5%

input,

header info 2%

Algorithmic components



Motivating Example
a load balancing scheme. However, this has always to take
into account that there is always a trade-off of load balanc-
ing fitness and synchronization cost. For this study we eval-
uate only a simple round-robin policy, which is simple and
additionally it can be implemented using lock-free single-
producer-single-consumer queues.

Detecting parallel stages using the PDG is relatively
straightforward. More specifically, using the loop-carried
dependence bitsets precomputed in the profiling stage we
can mask out data dependencies that manifest only across
inner loop levels. Computing the additional data that have
to be privatized to eliminate any false-dependencies can be
deferred till the code-generation phase. Stage replication is
also invalid in the case of stages with loop exits, i.e. loop-
carried control dependencies, that modify global data which
are later used out of the loop (copy-out data). Addition-
ally, in the case that a parallel stage contains any loop exits,
replication is permitted but without the option of OoO pro-
cessing due to the induced intra-stage control dependency.

Although stage replication essentially diverges from the
pure linear pipeline paradigm it is pretty straightforward to
extend our code generation and runtime strategy to han-
dle it cleanly. We extended libpipeline with the following
primitives: (i) push a buffer to one of the multiple out-
going queues, the selection is based on a callback (current
implementation supports only static balancing), (ii) pop a
buffer from on of the multiple queues of the previous stage,
(iii) notify siblings threads by inserting a special finalisa-
tion token in the tail of their incoming queue. The latter
is only necessary if the replicated stage contains loop exits
blocks, otherwise its a responsibility of the preceding thread
to replicate the finalization across all its successors.

3.5. Multi-level pipelines

Multimedia application typically perform computation
in a pipeline form, operating on a stream of data on dif-
ferent granularities. The code in figure 2 illustrates this
trend using a simplified excerpt of an MP3 decoder. The
outer-most loop operates on audio frames, III stereo oper-
ates on both stereo channels, and III hufman decode and
III antialias operate on a single audio channel at each in-
vocation. It is clear that any approach that partitions the
code on a single level ([14, 3, 16]) is always bound by
the execution time of the longest compound sub-nodes
(SCCs, functions or loops). In addition, this technique
can lead to more parallelisation opportunities, exposing
further levels of parallelism and thus provide the parti-
tioner with more flexibility. For instance, in figure 2
III hufman decode which is inherently sequential can be de-
coupled from III dequantize sample, which in fact a paral-
lel stage and it can operate on two audio channels indepen-
dently.

1 while (end) {
2 /∗ . . . input . . . ∗/
3 decode info(&bs , &fr ps ) ;
4 /∗ . . . input . . . ∗/
5 I I I ge t s ide info(&bs , &III s ide info , &fr ps ) ;

7 for ( gr = 0; gr < max gr ; gr++) {
8 for (ch = 0; ch < stereo ; ch++) {
9 I I I ge t sca le fac tors ( gr , ch , . . . ) ;

10 III hufman decode (gr , ch , . . . ) ;
11 III dequantize sample ( gr , ch , . . . ) ;
12 } /∗ ch ∗/

14 I I I s te reo ( gr , . . . ) ;

16 for (ch = 0; ch < stereo ; ch++) {
17 I I I reorder (ch , gr , . . . ) ;
18 I I I a n t i a l i a s (ch , gr , . . . ) ;

20 for ( sb = 0; sb < SBLIMIT; sb++) {
21 III hybrid (sb , ch , . . . ) ;
22 } /∗ ss ∗/

24 for ( ss = 0; ss < SSLIMIT; ss++) {
25 for ( sb = 0; sb < SBLIMIT; sb++) {
26 i f ( ( ss % 2) && (sb % 2))
27 polyPhaseIn [ sb ] =−hybridOut [ sb ] [ ss ] ;
28 else
29 polyPhaseIn [ sb ] = hybridOut [ sb ] [ ss ] ;
30 } /∗ sb ∗/
31 cl ip += SubBandSynthesis (ch , ss , . . . ) ;
32 } /∗ ss ∗/
33 } /∗ ch ∗/
34 } /∗ gr ∗/

36 out f i fo (∗pcm sample , . . . ) ;
37 } /∗ while ∗/

Figure 2. Multimedia application typically consist of
computation pipelines which operate on a stream of data
on different granularities. This figure shows a code ex-
cerpt from the EEMBC 2.0 MP3 decoding application.

To address this issue we extended our analyses and code
generation to handle partitions that span more that one loop-
level. Effectively this coalesces multiple pipelines that op-
erate on different rates in a single linear pipeline. It is im-
portant to stress at this point that the choice of a PDG rep-
resentation, as opposed to a control-flow based one, enables
us to handle the rather complicated control of nested loops
in a uniform and transparent way. The partitioning algo-
rithm can proceed and distribute the internal nodes of an un-
folded inner loop level to different partitions largely disre-
garding the code generation intricacies. Then, as part of the
PDG → CFG transformation, the replication of the ad-
ditional control dependencies that determine the execution
of all the internal nodes transparently results in the replica-
tion of the control-flow of the inner-loop to multiple threads.
The progress/termination of the replicated loops is deter-
mined by control-replicating variables which are pushed
from the preceding stage, just like in the case of single-level
partitioning.

5

Level 1
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Level 3

Level 2
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Motivating Example
a load balancing scheme. However, this has always to take
into account that there is always a trade-off of load balanc-
ing fitness and synchronization cost. For this study we eval-
uate only a simple round-robin policy, which is simple and
additionally it can be implemented using lock-free single-
producer-single-consumer queues.

Detecting parallel stages using the PDG is relatively
straightforward. More specifically, using the loop-carried
dependence bitsets precomputed in the profiling stage we
can mask out data dependencies that manifest only across
inner loop levels. Computing the additional data that have
to be privatized to eliminate any false-dependencies can be
deferred till the code-generation phase. Stage replication is
also invalid in the case of stages with loop exits, i.e. loop-
carried control dependencies, that modify global data which
are later used out of the loop (copy-out data). Addition-
ally, in the case that a parallel stage contains any loop exits,
replication is permitted but without the option of OoO pro-
cessing due to the induced intra-stage control dependency.

Although stage replication essentially diverges from the
pure linear pipeline paradigm it is pretty straightforward to
extend our code generation and runtime strategy to han-
dle it cleanly. We extended libpipeline with the following
primitives: (i) push a buffer to one of the multiple out-
going queues, the selection is based on a callback (current
implementation supports only static balancing), (ii) pop a
buffer from on of the multiple queues of the previous stage,
(iii) notify siblings threads by inserting a special finalisa-
tion token in the tail of their incoming queue. The latter
is only necessary if the replicated stage contains loop exits
blocks, otherwise its a responsibility of the preceding thread
to replicate the finalization across all its successors.

3.5. Multi-level pipelines

Multimedia application typically perform computation
in a pipeline form, operating on a stream of data on dif-
ferent granularities. The code in figure 2 illustrates this
trend using a simplified excerpt of an MP3 decoder. The
outer-most loop operates on audio frames, III stereo oper-
ates on both stereo channels, and III hufman decode and
III antialias operate on a single audio channel at each in-
vocation. It is clear that any approach that partitions the
code on a single level ([14, 3, 16]) is always bound by
the execution time of the longest compound sub-nodes
(SCCs, functions or loops). In addition, this technique
can lead to more parallelisation opportunities, exposing
further levels of parallelism and thus provide the parti-
tioner with more flexibility. For instance, in figure 2
III hufman decode which is inherently sequential can be de-
coupled from III dequantize sample, which in fact a paral-
lel stage and it can operate on two audio channels indepen-
dently.

1 while (end) {
2 /∗ . . . input . . . ∗/
3 decode info(&bs , &fr ps ) ;
4 /∗ . . . input . . . ∗/
5 I I I ge t s ide info(&bs , &III s ide info , &fr ps ) ;

7 for ( gr = 0; gr < max gr ; gr++) {
8 for (ch = 0; ch < stereo ; ch++) {
9 I I I ge t sca le fac tors ( gr , ch , . . . ) ;

10 III hufman decode (gr , ch , . . . ) ;
11 III dequantize sample ( gr , ch , . . . ) ;
12 } /∗ ch ∗/

14 I I I s te reo ( gr , . . . ) ;

16 for (ch = 0; ch < stereo ; ch++) {
17 I I I reorder (ch , gr , . . . ) ;
18 I I I a n t i a l i a s (ch , gr , . . . ) ;

20 for ( sb = 0; sb < SBLIMIT; sb++) {
21 III hybrid (sb , ch , . . . ) ;
22 } /∗ ss ∗/

24 for ( ss = 0; ss < SSLIMIT; ss++) {
25 for ( sb = 0; sb < SBLIMIT; sb++) {
26 i f ( ( ss % 2) && (sb % 2))
27 polyPhaseIn [ sb ] =−hybridOut [ sb ] [ ss ] ;
28 else
29 polyPhaseIn [ sb ] = hybridOut [ sb ] [ ss ] ;
30 } /∗ sb ∗/
31 cl ip += SubBandSynthesis (ch , ss , . . . ) ;
32 } /∗ ss ∗/
33 } /∗ ch ∗/
34 } /∗ gr ∗/

36 out f i fo (∗pcm sample , . . . ) ;
37 } /∗ while ∗/

Figure 2. Multimedia application typically consist of
computation pipelines which operate on a stream of data
on different granularities. This figure shows a code ex-
cerpt from the EEMBC 2.0 MP3 decoding application.

To address this issue we extended our analyses and code
generation to handle partitions that span more that one loop-
level. Effectively this coalesces multiple pipelines that op-
erate on different rates in a single linear pipeline. It is im-
portant to stress at this point that the choice of a PDG rep-
resentation, as opposed to a control-flow based one, enables
us to handle the rather complicated control of nested loops
in a uniform and transparent way. The partitioning algo-
rithm can proceed and distribute the internal nodes of an un-
folded inner loop level to different partitions largely disre-
garding the code generation intricacies. Then, as part of the
PDG → CFG transformation, the replication of the ad-
ditional control dependencies that determine the execution
of all the internal nodes transparently results in the replica-
tion of the control-flow of the inner-loop to multiple threads.
The progress/termination of the replicated loops is deter-
mined by control-replicating variables which are pushed
from the preceding stage, just like in the case of single-level
partitioning.
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Motivating Example
a load balancing scheme. However, this has always to take
into account that there is always a trade-off of load balanc-
ing fitness and synchronization cost. For this study we eval-
uate only a simple round-robin policy, which is simple and
additionally it can be implemented using lock-free single-
producer-single-consumer queues.

Detecting parallel stages using the PDG is relatively
straightforward. More specifically, using the loop-carried
dependence bitsets precomputed in the profiling stage we
can mask out data dependencies that manifest only across
inner loop levels. Computing the additional data that have
to be privatized to eliminate any false-dependencies can be
deferred till the code-generation phase. Stage replication is
also invalid in the case of stages with loop exits, i.e. loop-
carried control dependencies, that modify global data which
are later used out of the loop (copy-out data). Addition-
ally, in the case that a parallel stage contains any loop exits,
replication is permitted but without the option of OoO pro-
cessing due to the induced intra-stage control dependency.

Although stage replication essentially diverges from the
pure linear pipeline paradigm it is pretty straightforward to
extend our code generation and runtime strategy to han-
dle it cleanly. We extended libpipeline with the following
primitives: (i) push a buffer to one of the multiple out-
going queues, the selection is based on a callback (current
implementation supports only static balancing), (ii) pop a
buffer from on of the multiple queues of the previous stage,
(iii) notify siblings threads by inserting a special finalisa-
tion token in the tail of their incoming queue. The latter
is only necessary if the replicated stage contains loop exits
blocks, otherwise its a responsibility of the preceding thread
to replicate the finalization across all its successors.

3.5. Multi-level pipelines

Multimedia application typically perform computation
in a pipeline form, operating on a stream of data on dif-
ferent granularities. The code in figure 2 illustrates this
trend using a simplified excerpt of an MP3 decoder. The
outer-most loop operates on audio frames, III stereo oper-
ates on both stereo channels, and III hufman decode and
III antialias operate on a single audio channel at each in-
vocation. It is clear that any approach that partitions the
code on a single level ([14, 3, 16]) is always bound by
the execution time of the longest compound sub-nodes
(SCCs, functions or loops). In addition, this technique
can lead to more parallelisation opportunities, exposing
further levels of parallelism and thus provide the parti-
tioner with more flexibility. For instance, in figure 2
III hufman decode which is inherently sequential can be de-
coupled from III dequantize sample, which in fact a paral-
lel stage and it can operate on two audio channels indepen-
dently.

1 while (end) {
2 /∗ . . . input . . . ∗/
3 decode info(&bs , &fr ps ) ;
4 /∗ . . . input . . . ∗/
5 I I I ge t s ide info(&bs , &III s ide info , &fr ps ) ;

7 for ( gr = 0; gr < max gr ; gr++) {
8 for (ch = 0; ch < stereo ; ch++) {
9 I I I ge t sca le fac tors ( gr , ch , . . . ) ;

10 III hufman decode (gr , ch , . . . ) ;
11 III dequantize sample ( gr , ch , . . . ) ;
12 } /∗ ch ∗/

14 I I I s te reo ( gr , . . . ) ;

16 for (ch = 0; ch < stereo ; ch++) {
17 I I I reorder (ch , gr , . . . ) ;
18 I I I a n t i a l i a s (ch , gr , . . . ) ;

20 for ( sb = 0; sb < SBLIMIT; sb++) {
21 III hybrid (sb , ch , . . . ) ;
22 } /∗ ss ∗/

24 for ( ss = 0; ss < SSLIMIT; ss++) {
25 for ( sb = 0; sb < SBLIMIT; sb++) {
26 i f ( ( ss % 2) && (sb % 2))
27 polyPhaseIn [ sb ] =−hybridOut [ sb ] [ ss ] ;
28 else
29 polyPhaseIn [ sb ] = hybridOut [ sb ] [ ss ] ;
30 } /∗ sb ∗/
31 cl ip += SubBandSynthesis (ch , ss , . . . ) ;
32 } /∗ ss ∗/
33 } /∗ ch ∗/
34 } /∗ gr ∗/

36 out f i fo (∗pcm sample , . . . ) ;
37 } /∗ while ∗/

Figure 2. Multimedia application typically consist of
computation pipelines which operate on a stream of data
on different granularities. This figure shows a code ex-
cerpt from the EEMBC 2.0 MP3 decoding application.

To address this issue we extended our analyses and code
generation to handle partitions that span more that one loop-
level. Effectively this coalesces multiple pipelines that op-
erate on different rates in a single linear pipeline. It is im-
portant to stress at this point that the choice of a PDG rep-
resentation, as opposed to a control-flow based one, enables
us to handle the rather complicated control of nested loops
in a uniform and transparent way. The partitioning algo-
rithm can proceed and distribute the internal nodes of an un-
folded inner loop level to different partitions largely disre-
garding the code generation intricacies. Then, as part of the
PDG → CFG transformation, the replication of the ad-
ditional control dependencies that determine the execution
of all the internal nodes transparently results in the replica-
tion of the control-flow of the inner-loop to multiple threads.
The progress/termination of the replicated loops is deter-
mined by control-replicating variables which are pushed
from the preceding stage, just like in the case of single-level
partitioning.
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Motivating Example
a load balancing scheme. However, this has always to take
into account that there is always a trade-off of load balanc-
ing fitness and synchronization cost. For this study we eval-
uate only a simple round-robin policy, which is simple and
additionally it can be implemented using lock-free single-
producer-single-consumer queues.

Detecting parallel stages using the PDG is relatively
straightforward. More specifically, using the loop-carried
dependence bitsets precomputed in the profiling stage we
can mask out data dependencies that manifest only across
inner loop levels. Computing the additional data that have
to be privatized to eliminate any false-dependencies can be
deferred till the code-generation phase. Stage replication is
also invalid in the case of stages with loop exits, i.e. loop-
carried control dependencies, that modify global data which
are later used out of the loop (copy-out data). Addition-
ally, in the case that a parallel stage contains any loop exits,
replication is permitted but without the option of OoO pro-
cessing due to the induced intra-stage control dependency.

Although stage replication essentially diverges from the
pure linear pipeline paradigm it is pretty straightforward to
extend our code generation and runtime strategy to han-
dle it cleanly. We extended libpipeline with the following
primitives: (i) push a buffer to one of the multiple out-
going queues, the selection is based on a callback (current
implementation supports only static balancing), (ii) pop a
buffer from on of the multiple queues of the previous stage,
(iii) notify siblings threads by inserting a special finalisa-
tion token in the tail of their incoming queue. The latter
is only necessary if the replicated stage contains loop exits
blocks, otherwise its a responsibility of the preceding thread
to replicate the finalization across all its successors.

3.5. Multi-level pipelines

Multimedia application typically perform computation
in a pipeline form, operating on a stream of data on dif-
ferent granularities. The code in figure 2 illustrates this
trend using a simplified excerpt of an MP3 decoder. The
outer-most loop operates on audio frames, III stereo oper-
ates on both stereo channels, and III hufman decode and
III antialias operate on a single audio channel at each in-
vocation. It is clear that any approach that partitions the
code on a single level ([14, 3, 16]) is always bound by
the execution time of the longest compound sub-nodes
(SCCs, functions or loops). In addition, this technique
can lead to more parallelisation opportunities, exposing
further levels of parallelism and thus provide the parti-
tioner with more flexibility. For instance, in figure 2
III hufman decode which is inherently sequential can be de-
coupled from III dequantize sample, which in fact a paral-
lel stage and it can operate on two audio channels indepen-
dently.

1 while (end) {
2 /∗ . . . input . . . ∗/
3 decode info(&bs , &fr ps ) ;
4 /∗ . . . input . . . ∗/
5 I I I ge t s ide info(&bs , &III s ide info , &fr ps ) ;

7 for ( gr = 0; gr < max gr ; gr++) {
8 for (ch = 0; ch < stereo ; ch++) {
9 I I I ge t sca le fac tors ( gr , ch , . . . ) ;

10 III hufman decode (gr , ch , . . . ) ;
11 III dequantize sample ( gr , ch , . . . ) ;
12 } /∗ ch ∗/

14 I I I s te reo ( gr , . . . ) ;

16 for (ch = 0; ch < stereo ; ch++) {
17 I I I reorder (ch , gr , . . . ) ;
18 I I I a n t i a l i a s (ch , gr , . . . ) ;

20 for ( sb = 0; sb < SBLIMIT; sb++) {
21 III hybrid (sb , ch , . . . ) ;
22 } /∗ ss ∗/

24 for ( ss = 0; ss < SSLIMIT; ss++) {
25 for ( sb = 0; sb < SBLIMIT; sb++) {
26 i f ( ( ss % 2) && (sb % 2))
27 polyPhaseIn [ sb ] =−hybridOut [ sb ] [ ss ] ;
28 else
29 polyPhaseIn [ sb ] = hybridOut [ sb ] [ ss ] ;
30 } /∗ sb ∗/
31 cl ip += SubBandSynthesis (ch , ss , . . . ) ;
32 } /∗ ss ∗/
33 } /∗ ch ∗/
34 } /∗ gr ∗/

36 out f i fo (∗pcm sample , . . . ) ;
37 } /∗ while ∗/

Figure 2. Multimedia application typically consist of
computation pipelines which operate on a stream of data
on different granularities. This figure shows a code ex-
cerpt from the EEMBC 2.0 MP3 decoding application.

To address this issue we extended our analyses and code
generation to handle partitions that span more that one loop-
level. Effectively this coalesces multiple pipelines that op-
erate on different rates in a single linear pipeline. It is im-
portant to stress at this point that the choice of a PDG rep-
resentation, as opposed to a control-flow based one, enables
us to handle the rather complicated control of nested loops
in a uniform and transparent way. The partitioning algo-
rithm can proceed and distribute the internal nodes of an un-
folded inner loop level to different partitions largely disre-
garding the code generation intricacies. Then, as part of the
PDG → CFG transformation, the replication of the ad-
ditional control dependencies that determine the execution
of all the internal nodes transparently results in the replica-
tion of the control-flow of the inner-loop to multiple threads.
The progress/termination of the replicated loops is deter-
mined by control-replicating variables which are pushed
from the preceding stage, just like in the case of single-level
partitioning.
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Motivating Example
a load balancing scheme. However, this has always to take
into account that there is always a trade-off of load balanc-
ing fitness and synchronization cost. For this study we eval-
uate only a simple round-robin policy, which is simple and
additionally it can be implemented using lock-free single-
producer-single-consumer queues.

Detecting parallel stages using the PDG is relatively
straightforward. More specifically, using the loop-carried
dependence bitsets precomputed in the profiling stage we
can mask out data dependencies that manifest only across
inner loop levels. Computing the additional data that have
to be privatized to eliminate any false-dependencies can be
deferred till the code-generation phase. Stage replication is
also invalid in the case of stages with loop exits, i.e. loop-
carried control dependencies, that modify global data which
are later used out of the loop (copy-out data). Addition-
ally, in the case that a parallel stage contains any loop exits,
replication is permitted but without the option of OoO pro-
cessing due to the induced intra-stage control dependency.

Although stage replication essentially diverges from the
pure linear pipeline paradigm it is pretty straightforward to
extend our code generation and runtime strategy to han-
dle it cleanly. We extended libpipeline with the following
primitives: (i) push a buffer to one of the multiple out-
going queues, the selection is based on a callback (current
implementation supports only static balancing), (ii) pop a
buffer from on of the multiple queues of the previous stage,
(iii) notify siblings threads by inserting a special finalisa-
tion token in the tail of their incoming queue. The latter
is only necessary if the replicated stage contains loop exits
blocks, otherwise its a responsibility of the preceding thread
to replicate the finalization across all its successors.

3.5. Multi-level pipelines

Multimedia application typically perform computation
in a pipeline form, operating on a stream of data on dif-
ferent granularities. The code in figure 2 illustrates this
trend using a simplified excerpt of an MP3 decoder. The
outer-most loop operates on audio frames, III stereo oper-
ates on both stereo channels, and III hufman decode and
III antialias operate on a single audio channel at each in-
vocation. It is clear that any approach that partitions the
code on a single level ([14, 3, 16]) is always bound by
the execution time of the longest compound sub-nodes
(SCCs, functions or loops). In addition, this technique
can lead to more parallelisation opportunities, exposing
further levels of parallelism and thus provide the parti-
tioner with more flexibility. For instance, in figure 2
III hufman decode which is inherently sequential can be de-
coupled from III dequantize sample, which in fact a paral-
lel stage and it can operate on two audio channels indepen-
dently.

1 while (end) {
2 /∗ . . . input . . . ∗/
3 decode info(&bs , &fr ps ) ;
4 /∗ . . . input . . . ∗/
5 I I I ge t s ide info(&bs , &III s ide info , &fr ps ) ;

7 for ( gr = 0; gr < max gr ; gr++) {
8 for (ch = 0; ch < stereo ; ch++) {
9 I I I ge t sca le fac tors ( gr , ch , . . . ) ;

10 III hufman decode (gr , ch , . . . ) ;
11 III dequantize sample ( gr , ch , . . . ) ;
12 } /∗ ch ∗/

14 I I I s te reo ( gr , . . . ) ;

16 for (ch = 0; ch < stereo ; ch++) {
17 I I I reorder (ch , gr , . . . ) ;
18 I I I a n t i a l i a s (ch , gr , . . . ) ;

20 for ( sb = 0; sb < SBLIMIT; sb++) {
21 III hybrid (sb , ch , . . . ) ;
22 } /∗ ss ∗/

24 for ( ss = 0; ss < SSLIMIT; ss++) {
25 for ( sb = 0; sb < SBLIMIT; sb++) {
26 i f ( ( ss % 2) && (sb % 2))
27 polyPhaseIn [ sb ] =−hybridOut [ sb ] [ ss ] ;
28 else
29 polyPhaseIn [ sb ] = hybridOut [ sb ] [ ss ] ;
30 } /∗ sb ∗/
31 cl ip += SubBandSynthesis (ch , ss , . . . ) ;
32 } /∗ ss ∗/
33 } /∗ ch ∗/
34 } /∗ gr ∗/

36 out f i fo (∗pcm sample , . . . ) ;
37 } /∗ while ∗/

Figure 2. Multimedia application typically consist of
computation pipelines which operate on a stream of data
on different granularities. This figure shows a code ex-
cerpt from the EEMBC 2.0 MP3 decoding application.

To address this issue we extended our analyses and code
generation to handle partitions that span more that one loop-
level. Effectively this coalesces multiple pipelines that op-
erate on different rates in a single linear pipeline. It is im-
portant to stress at this point that the choice of a PDG rep-
resentation, as opposed to a control-flow based one, enables
us to handle the rather complicated control of nested loops
in a uniform and transparent way. The partitioning algo-
rithm can proceed and distribute the internal nodes of an un-
folded inner loop level to different partitions largely disre-
garding the code generation intricacies. Then, as part of the
PDG → CFG transformation, the replication of the ad-
ditional control dependencies that determine the execution
of all the internal nodes transparently results in the replica-
tion of the control-flow of the inner-loop to multiple threads.
The progress/termination of the replicated loops is deter-
mined by control-replicating variables which are pushed
from the preceding stage, just like in the case of single-level
partitioning.
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• Hierachical pipelines increase efficiency

• Replication of pipeline stages exposes 
additional parallelism

• Orthogonal to traditional parallelisation 
approaches (parallel loops inside pipeline stages)
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Partitioning Strategy

• Pipeline performance determined by 
the slowest stage

•Apply code transformations only to the 
slowest stage to uncover further parallelism



Partitioning Algorithm
•Top-down approach: loops and functions folded

•Preprocess PDG of the loop:

• Form Strongly Connected Components

• Focus on slowest component:

• If data-parallel (i) greedily augment it, and (ii) 
replicate until another component is the slowest

• If not data-parallel try to reduce the execution 
time by unfolding loop/function nodes in the 
component

•Partition pipeline using the load of the slowest 
component as threshold



Partitioning Operations

•Loop/Function unfolding

• “Opening up” loop/function for hierarchical partitioning

•Replication

• Duplication of partitioning unit for parallel execution

•Split function

• Insert pipeline stage boundary within function body

•Augment block

• Merge separate blocks into single pipeline stage
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Experimental Evaluation
Application source lines

MP3 decode EEMBC 2.0 20K

MPEG-2 decode EEMBC 2.0 23K

JPEG encode EEMBC 2.0 22K

bzip2 compress SPEC CPU2000 5K

Evaluation platformEvaluation platform

Hardware

Dual Socket, Intel Xeon X5450 @ 3.00GHz
2 Quad-cores, 8 cores in total
SSE2, SSE3 and SSE4.1 extensions
6Mb L2-cache shared/2 cores (12Mb/chip)
16Gb DDR2 SDRAM

O.S. 64-bit Scientific Linux
kernel 2.6.9-55 x86_64

Compiler GNU   GCC 4.4.1
-O3 -march=core2



Extracted Pipelines

JPEG encoding

Chapter 6. Hierachical Pipeline Parallelism

Pipeline techniques

Benchmark LOC dataset replicate multi-level func. split #cores speedup

mp3 20K 128Kb/s cbr stereo ✓ ✓ 6 3.52x
bzip2 5K 64MB program ✓ ✓ 8 4.70x
mpeg2dec 23K 375 704x576 frames ✓ ✓ 3 2.68x
cjpeg 22K 4096x4096x24bit bmp ✓ ✓ 2 1.47x

Table 6.2.: List of the benchmarks used for evaluation and their main characteristics. For all
the benchmarks more than one of the techniques that we introduced were necessary to achieve
reasonable parallel speedups. The last column reports the attainable speedup in M1 (table 3.8)
which is equipped with 8 cores in total. Note that some applications utilise less than 8 cores
since further partitioning would only increase the communication overhead without reducing
the execution time of the slowest stage.
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Figure 6.12.: Flow graph of the extracted pipeline for each application in table 6.2

6.3.1.1. MP3 Decoding (EEMBC 2.0)

This benchmark implements a decoder for the de-facto standard for digital music com-
pression, Mpeg-1 Audio Layer 3. As shown in the motivating example in figure 6.1,
the decoding pipeline comprises multiple kernels that process the encoded data stream
at various levels of granularity, ranging from whole audio frames down to frequency
sub-bands.

The key challenge in parallelising this application is in exposing sufficient work spread
over multiple loop levels to the Pdg partitioner in order to facilitate the extraction of
a well-balanced pipeline. The Mp3 decoder makes use of idiosyncratic programming
idioms that typically evade static analysis such as returning function values through
buffers passed into functions by pointers, deeply nested function calls and the extensive
use of dynamically allocated buffers. Existing approaches either do not address this
issue at all [22], or rely on manual code transformations (e.g. function inlining, full
loop unrolling or loop distribution) [144]. The latter is both an error-prone process,
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Chapter 6. Hierachical Pipeline Parallelism

Pipeline techniques

Benchmark LOC dataset replicate multi-level func. split #cores speedup

mp3 20K 128Kb/s cbr stereo ✓ ✓ 6 3.52x
bzip2 5K 64MB program ✓ ✓ 8 4.70x
mpeg2dec 23K 375 704x576 frames ✓ ✓ 3 2.68x
cjpeg 22K 4096x4096x24bit bmp ✓ ✓ 2 1.47x

Table 6.2.: List of the benchmarks used for evaluation and their main characteristics. For all
the benchmarks more than one of the techniques that we introduced were necessary to achieve
reasonable parallel speedups. The last column reports the attainable speedup in M1 (table 3.8)
which is equipped with 8 cores in total. Note that some applications utilise less than 8 cores
since further partitioning would only increase the communication overhead without reducing
the execution time of the slowest stage.
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Figure 6.12.: Flow graph of the extracted pipeline for each application in table 6.2

6.3.1.1. MP3 Decoding (EEMBC 2.0)

This benchmark implements a decoder for the de-facto standard for digital music com-
pression, Mpeg-1 Audio Layer 3. As shown in the motivating example in figure 6.1,
the decoding pipeline comprises multiple kernels that process the encoded data stream
at various levels of granularity, ranging from whole audio frames down to frequency
sub-bands.

The key challenge in parallelising this application is in exposing sufficient work spread
over multiple loop levels to the Pdg partitioner in order to facilitate the extraction of
a well-balanced pipeline. The Mp3 decoder makes use of idiosyncratic programming
idioms that typically evade static analysis such as returning function values through
buffers passed into functions by pointers, deeply nested function calls and the extensive
use of dynamically allocated buffers. Existing approaches either do not address this
issue at all [22], or rely on manual code transformations (e.g. function inlining, full
loop unrolling or loop distribution) [144]. The latter is both an error-prone process,
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MP3 decoding

Chapter 6. Hierachical Pipeline Parallelism

Pipeline techniques

Benchmark LOC dataset replicate multi-level func. split #cores speedup

mp3 20K 128Kb/s cbr stereo ✓ ✓ 6 3.52x
bzip2 5K 64MB program ✓ ✓ 8 4.70x
mpeg2dec 23K 375 704x576 frames ✓ ✓ 3 2.68x
cjpeg 22K 4096x4096x24bit bmp ✓ ✓ 2 1.47x

Table 6.2.: List of the benchmarks used for evaluation and their main characteristics. For all
the benchmarks more than one of the techniques that we introduced were necessary to achieve
reasonable parallel speedups. The last column reports the attainable speedup in M1 (table 3.8)
which is equipped with 8 cores in total. Note that some applications utilise less than 8 cores
since further partitioning would only increase the communication overhead without reducing
the execution time of the slowest stage.
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Figure 6.12.: Flow graph of the extracted pipeline for each application in table 6.2

6.3.1.1. MP3 Decoding (EEMBC 2.0)

This benchmark implements a decoder for the de-facto standard for digital music com-
pression, Mpeg-1 Audio Layer 3. As shown in the motivating example in figure 6.1,
the decoding pipeline comprises multiple kernels that process the encoded data stream
at various levels of granularity, ranging from whole audio frames down to frequency
sub-bands.

The key challenge in parallelising this application is in exposing sufficient work spread
over multiple loop levels to the Pdg partitioner in order to facilitate the extraction of
a well-balanced pipeline. The Mp3 decoder makes use of idiosyncratic programming
idioms that typically evade static analysis such as returning function values through
buffers passed into functions by pointers, deeply nested function calls and the extensive
use of dynamically allocated buffers. Existing approaches either do not address this
issue at all [22], or rely on manual code transformations (e.g. function inlining, full
loop unrolling or loop distribution) [144]. The latter is both an error-prone process,
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Chapter 6. Hierachical Pipeline Parallelism

Pipeline techniques

Benchmark LOC dataset replicate multi-level func. split #cores speedup

mp3 20K 128Kb/s cbr stereo ✓ ✓ 6 3.52x
bzip2 5K 64MB program ✓ ✓ 8 4.70x
mpeg2dec 23K 375 704x576 frames ✓ ✓ 3 2.68x
cjpeg 22K 4096x4096x24bit bmp ✓ ✓ 2 1.47x

Table 6.2.: List of the benchmarks used for evaluation and their main characteristics. For all
the benchmarks more than one of the techniques that we introduced were necessary to achieve
reasonable parallel speedups. The last column reports the attainable speedup in M1 (table 3.8)
which is equipped with 8 cores in total. Note that some applications utilise less than 8 cores
since further partitioning would only increase the communication overhead without reducing
the execution time of the slowest stage.
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Figure 6.12.: Flow graph of the extracted pipeline for each application in table 6.2

6.3.1.1. MP3 Decoding (EEMBC 2.0)

This benchmark implements a decoder for the de-facto standard for digital music com-
pression, Mpeg-1 Audio Layer 3. As shown in the motivating example in figure 6.1,
the decoding pipeline comprises multiple kernels that process the encoded data stream
at various levels of granularity, ranging from whole audio frames down to frequency
sub-bands.

The key challenge in parallelising this application is in exposing sufficient work spread
over multiple loop levels to the Pdg partitioner in order to facilitate the extraction of
a well-balanced pipeline. The Mp3 decoder makes use of idiosyncratic programming
idioms that typically evade static analysis such as returning function values through
buffers passed into functions by pointers, deeply nested function calls and the extensive
use of dynamically allocated buffers. Existing approaches either do not address this
issue at all [22], or rely on manual code transformations (e.g. function inlining, full
loop unrolling or loop distribution) [144]. The latter is both an error-prone process,
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Chapter 6. Hierachical Pipeline Parallelism

Pipeline techniques

Benchmark LOC dataset replicate multi-level func. split #cores speedup

mp3 20K 128Kb/s cbr stereo ✓ ✓ 6 3.52x
bzip2 5K 64MB program ✓ ✓ 8 4.70x
mpeg2dec 23K 375 704x576 frames ✓ ✓ 3 2.68x
cjpeg 22K 4096x4096x24bit bmp ✓ ✓ 2 1.47x

Table 6.2.: List of the benchmarks used for evaluation and their main characteristics. For all
the benchmarks more than one of the techniques that we introduced were necessary to achieve
reasonable parallel speedups. The last column reports the attainable speedup in M1 (table 3.8)
which is equipped with 8 cores in total. Note that some applications utilise less than 8 cores
since further partitioning would only increase the communication overhead without reducing
the execution time of the slowest stage.
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Figure 6.12.: Flow graph of the extracted pipeline for each application in table 6.2

6.3.1.1. MP3 Decoding (EEMBC 2.0)

This benchmark implements a decoder for the de-facto standard for digital music com-
pression, Mpeg-1 Audio Layer 3. As shown in the motivating example in figure 6.1,
the decoding pipeline comprises multiple kernels that process the encoded data stream
at various levels of granularity, ranging from whole audio frames down to frequency
sub-bands.

The key challenge in parallelising this application is in exposing sufficient work spread
over multiple loop levels to the Pdg partitioner in order to facilitate the extraction of
a well-balanced pipeline. The Mp3 decoder makes use of idiosyncratic programming
idioms that typically evade static analysis such as returning function values through
buffers passed into functions by pointers, deeply nested function calls and the extensive
use of dynamically allocated buffers. Existing approaches either do not address this
issue at all [22], or rely on manual code transformations (e.g. function inlining, full
loop unrolling or loop distribution) [144]. The latter is both an error-prone process,
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Application replication multi-loop func. split # cores speedup

MP3 dec. ✓ ✓ ‒ 7 3.52x

MPEG-2 dec. ‒ ✓ ✓ 3 2.68x

JPEG enc. ‒ ✓ ✓ 2 1.47x

bzip2 com. ✓ ‒ ✓ 8 4.70x



Further Details

• Sequentialisation of the PDG

•Data privatisation

• Inter-thread communication

•Dynamic memory disambiguation

• Pipeline runtime system
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Summary

•Serious demand for parallelisation tool support

•Static analysis are too conservative

• Profile driven analyses detect more parallelism, but 
require additional manual checking

•Mapping of SW parallelism to HW parallelism is non-
intuitive and depends on target platform

• Successful application of machine learning

•More scope for parallelisation beyond FOR loops

• Start exploiting parallel design patterns



Other Interests

•Everything Parallel

•Code Generation for Embedded Processors

•Fast Instruction Set Simulation

•Parallel JIT Compilation

•Statistical Performance Modelling

•Detection of Parallel Design Patterns

•Mapping for Heterogeneous Multi-Cores



Questions?



BACKUP SLIDES



RESULTS FOR CELL
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• Overhead is more obvious on small datasets

SPEC FPNAS NPB 2.3 OMP-C  and  SPEC  CFP2000
Dual Socket, QS20 Cell Blade 
IBM xlc ssc v0.9 O5 -qstrict -qarch=cell -qipa=partition=minute

NAS PB

Performance on Cell
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SPEC FPNAS NPB 2.3 OMP-C  and  SPEC  CFP2000

Dual Socket, QS20 Cell Blade
IBM xlc ssc v0.9 O5 -qstrict -qarch=cell -qipa=partition=minute

NAS PB

• EP gets significant speedup

- No synchronization

- Not memory bound

Performance on Cell



PIPELINES: 
CODE GENERATION
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Algorithm 1: Top-down parallelism selection.Algorithm 1: Top-down parallelism selection.

Input
· L, F : loop and function set respectively

· CTREE: tree of compound nodes

· L0: virtual top-most loop

· Ldoall: profitable DOALL loops

· Wi : ∀i ∈ CTREE, profiled weight of i
· np: # of available cores

Result
· Pdoall: selected DOALL loops

· Ppipe: selected pipelined loops

Data
· Q: work queue

Procedure top down parallelize
Q ← {L0} ;1
while Q �= ∅ do2

c ← Q.poll();3
if (c ∈ Ldoall) ∧ (Wc > thresholddoall) then4

add c in Pdoall;5
else if (c ∈ L) ∧ (Wc > thresholdpipe) then6

(P, Wpipe) ←find pipeline(c, np);7
if Sc �= ∅ ∧Wc/Wpipe > thresholdspeedup then8

add c in Ppipe;9
else

Q.add(children of c in CTREE);10
else if (c ∈ F ) ∧ (Wc > threshold) then11

Q.add(children of c in CTREE);12
end

containing a function call site in addition to the maximum recursively defined set of BBs that the specific

function call includes, (ii) the set of BBs belonging to a loop (loop-structure information is based on a variant

of standard control flowgraph analysis performed before the instrumentation pass) (iii) a Strongly Connected

Component (SCC) containing other compound nodes or single BBs.

The PDG is initially computed for the whole program and then compound nodes are formed in a pos-

torder fashion based on a whole program function/loop tree. At this point compound nodes consist of either

functions or loops. The current implementation is based on the simple iterative algorithm from [1]. Each data-

dependence edge in the PDG is annotated with the following fields: (i) loop-carried bitmask that designates

the loop-levels which carry the relevant dependencies, (ii) intra-iteration dependency bitmask, and (iii) mean

size of the data communicated between the adjacent nodes per iteration at each level.

2.2. Top-Down Hierarchical Pipeline Stage Partitioning

Most applications that exhibit pipeline parallelism will only have a small number of dominating stages.

When targeting CMPs with high number of cores this factor will eventually limit the maximum attainable

7

Algorithm 1: Top-down parallelism selection.

Input
· L, F : loop and function set respectively

· CTREE: tree of compound nodes

· L0: virtual top-most loop

· Ldoall: profitable DOALL loops

· Wi : ∀i ∈ CTREE, profiled weight of i
· np: # of available cores

Result
· Pdoall: selected DOALL loops

· Ppipe: selected pipelined loops

Data
· Q: work queue

Procedure top down parallelize
Q ← {L0} ;1
while Q �= ∅ do2

c ← Q.poll();3
if (c ∈ Ldoall) ∧ (Wc > thresholddoall) then4

add c in Pdoall;5
else if (c ∈ L) ∧ (Wc > thresholdpipe) then6

(P, Wpipe) ←find pipeline(c, np);7
if Sc �= ∅ ∧Wc/Wpipe > thresholdspeedup then8

add c in Ppipe;9
else

Q.add(children of c in CTREE);10
else if (c ∈ F ) ∧ (Wc > threshold) then11

Q.add(children of c in CTREE);12
end

containing a function call site in addition to the maximum recursively defined set of BBs that the specific

function call includes, (ii) the set of BBs belonging to a loop (loop-structure information is based on a variant

of standard control flowgraph analysis performed before the instrumentation pass) (iii) a Strongly Connected

Component (SCC) containing other compound nodes or single BBs.

The PDG is initially computed for the whole program and then compound nodes are formed in a pos-

torder fashion based on a whole program function/loop tree. At this point compound nodes consist of either

functions or loops. The current implementation is based on the simple iterative algorithm from [1]. Each data-

dependence edge in the PDG is annotated with the following fields: (i) loop-carried bitmask that designates

the loop-levels which carry the relevant dependencies, (ii) intra-iteration dependency bitmask, and (iii) mean

size of the data communicated between the adjacent nodes per iteration at each level.

2.2. Top-Down Hierarchical Pipeline Stage Partitioning

Most applications that exhibit pipeline parallelism will only have a small number of dominating stages.

When targeting CMPs with high number of cores this factor will eventually limit the maximum attainable
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1 while ( (n = read f i le ( inf , data ) ) != EOF) {
2 for ( blk=0; blk<n; blk++) {
3 coef [ blk ] = decode( data , blk ) ;
4 raw data [ blk ] = inv transform ( coef , blk ) ;
5 }
6 out data = enhance fi l ter ( raw data ) ;
7 wr i te f i l e ( outf , out data ) ;
8 } /∗ while ∗/

Figure 5.

3.6. Code generation and runtime system

Inter-stage and intra-stage privatization In the case of
stage replication besides the data causing inter-stage de-
pendencies, we should also consider the intra-stage loop-
carried dependencies which store temporary data are sub-
sequently killed by writes before their use in a following
iteration.

Implementation details Single-producer/single-
consumer lock-free queues to communicate pointer
values. Use of a special value that specifies the last item
of the list. Reduces cache-line invalidations which occur
when polling on a variable modified by producer (number
of items). Implementation similar to [5].

Thread-local storage vs. thread-id indexing

4. Empirical evaluation

Execution platform We evaluated our proposal on a
shared memory architecture (Dual quad-core Intel Xeon).
The configuration of the targeted system is given in table 1.

4.1. Case studies

MPEG-2 video decoding (EEMBC 2.0) implements the
broadly used international standard for motion video com-
pression. At an algorithmic level, MPEG-2 decoding fea-
tures multiple processing stages (e.g. coefficient decod-
ing, saturation control, motion compensation) which suc-
cessively operate on the encoded input stream of frames on

C1: Intel Xeon Server
Hardware Dual Socket, Intel Xeon X5450 @ 3.00GHz

2 Quad-cores, 8 cores in total
32KB I-cache & 32KB write-back D-cache
6MB L2-cache shared/2 cores (12MB/chip)

16GB DDR2 SDRAM
O.S 64-bit Scientific Linux with kernel 2.6.18 x86 64
Compiler GNU gcc 4.2.1

-O3 -march=core2

Table 1. Hardware and software configuration details of
the evaluation platform.

different levels of granularities (e.g. frames, slices, compo-
nents, macro-blocks). The main factor that limits the paral-
lelisation of MPEG-2 to more cores is that despite the large
number of algorithmic steps, these are highly unbalanced.
Coefficient decoding, motion compensation and output for-
mat conversion are dominating the decoding process. Most
of these components exhibit additional finer-grain data and
instruction-level parallelism, traditionally exploited by of-
floading to SIMD or customized accelerators. Although
analyses uncovered most of these opportunities, it is clear
that the majority is not amendable to thread-level paralleli-
sation. A case worth mentioning, is the output format con-
version function, it forms a two-way task-parallel pattern
nested in the final pipeline stage. We experimented with
two alternative implementation schemes. The first is using
the default code generation process by splitting the paral-
lel tasks to two successive pipeline stages and a second one
uses OpenMP parallel regions. Both improved the execu-
tion time of the specific stage, albeit without having any
significant impact on the overall speedup. This is mainly
because the other stages consist of SCC’s and thus hamper
the pipeline’s throughput.

bzip2 encoding (SPEC2000) implements a lossless,
block-sorting data compressor. It exhibits a typical pipeline
structure which operates on constant size (but variable
across successive data-blocks and consists roughly of the
following stages: (i) input and Run-Length Encoding which
is inherently sequential, (ii) independently compresses each
block by performing a Burrows-Wheeler transform on , and
(iii) MTF transform and (iv) output. The high-level algo-
rithmic view is pretty clear and the independent process-
ing of constant sized blocks lends itself to stage replica-
tion. However, the extensive use of dynamic memory al-
location, pointer arithmetic (e.g. arrays indexes with values
[−1, N − 1]) and pointer aliasing (e.g. pointers of different
types are used to access the same allocated buffer) hamper
parallelisation. Detailed IR-profiling information in com-
bination to the simple runtime-disambiguation mechanism
described in section 3.6 In addition, the approach of selec-
tively unfolding function nodes effectively allowed to de-

6

Figure 4: Source code for the example in

figure 5

tribute the internal nodes of an unfolded inner loop level

to different partitions and largely disregards the code gen-

eration intricacies. Then, as part of the PDG → CFG
transformation, the replication of the additional control de-

pendencies that determine the execution of all the internal

nodes transparently result in the replication of the control-

flow of the inner-loop to multiple threads. The progress/ter-

mination of the replicated loops is determined by control-

replicating variables which are pushed from the preceding

stage, just like in the case of single-level partitioning.

2.5 Parallel Code Generation and Runtime
System

The code generation process (figure 3) inputs the parti-

tioned pipeline specification and the original procedure-level

Cfgs. Parallel code generation is then performed on the

Cfg for each procedure at the middle-level Ir in the CoSy
compiler.

The description of the code generation process that follows

is based on the example code in figure 5. On the left hand,

the annotations refer to the contribution (in %) of each state-

ment in relation to the whole program execution time. The

initial Cfg which is used for the profiling stage as well as

parallelization is shown in figure 5(a). Basic blocks with just

one unconditional control statement (e.g. bb4, bb5 ) are place

holders for loop control structures which are not present (e.g.

test and increment block respectively) and are inserted by

the initial control flow analysis pass. These blocks are later

utilized for injecting communication code.

Control-Flow.
First, the algorithm computes the set of Bbs (V a

s ) of the

original Cfg which include the control instructions that de-

termine the execution of the Bbs in the current pipeline

stage s (line 2). This control-replication set of Bbs can

be computed as the union of the vertexes in Pdg that are

backwards-reachable from any vertex in s using control-

dependence edges only. In figure 5, for stage 1 this is V r
2 {bb1,

bb8}. Then, we create a new function with a subgraph of the

original Cfg that includes both the blocks assigned to stage

s by the partitioner V a
s and the control-replication blocks

V r
s (line 8). The subgraph includes every edge connecting

vertexes in Vs, but also edges that substitute dangling out-

going edges. We redirect these edges to the deepest ancestor

of the missing vertex in the post-dominance tree of the origi-

nal graph (lines 5-7). For instance, in stage 1 of the previous

example the edge (bb1, bb7) is replaced by edge (bb1, bb2) as

shown in figure 5(c). The final step is to add Ir statements

that capture the outcome of the conditional-control state-

ments of Bbs in V a
s which are control-replication Bbs for any

of the subsequent stages (line 9). For each such conditional-

control statement a new local variable, predicate, is defined.

The predicate is assigned the value of the conditional expres-

sion found in the control statement. This transformation

enables us to communicate predicate values to all the equiv-

alent control-replicating Bbs by utilizing a single, uniform

pipeline data-flow mechanism (line 12).

Privatization.
In line 10 any references to local

1
variables or arguments

of the original function are patched to refer to thread private

data. For every such variable referenced in the body of an

outlined stage function a new local, stack-allocated variable

is defined. Aggregate-typed variables (structures or arrays)

might be changed to pointer-to-original-type variables to fa-

1
Terminology regarding variable or object visibility, storage,

etc. is based on the language-portable IR of the compiler

and not the one of ISO C. Nevertheless, the usage of terms

should be clear enough from its context.
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Algorithm 1: Top-down parallelism selection.Algorithm 1: Top-down parallelism selection.

Input
· L, F : loop and function set respectively

· CTREE: tree of compound nodes

· L0: virtual top-most loop

· Ldoall: profitable DOALL loops

· Wi : ∀i ∈ CTREE, profiled weight of i
· np: # of available cores

Result
· Pdoall: selected DOALL loops

· Ppipe: selected pipelined loops

Data
· Q: work queue

Procedure top down parallelize
Q ← {L0} ;1
while Q �= ∅ do2

c ← Q.poll();3
if (c ∈ Ldoall) ∧ (Wc > thresholddoall) then4

add c in Pdoall;5
else if (c ∈ L) ∧ (Wc > thresholdpipe) then6

(P, Wpipe) ←find pipeline(c, np);7
if Sc �= ∅ ∧Wc/Wpipe > thresholdspeedup then8

add c in Ppipe;9
else

Q.add(children of c in CTREE);10
else if (c ∈ F ) ∧ (Wc > threshold) then11

Q.add(children of c in CTREE);12
end

containing a function call site in addition to the maximum recursively defined set of BBs that the specific

function call includes, (ii) the set of BBs belonging to a loop (loop-structure information is based on a variant

of standard control flowgraph analysis performed before the instrumentation pass) (iii) a Strongly Connected

Component (SCC) containing other compound nodes or single BBs.

The PDG is initially computed for the whole program and then compound nodes are formed in a pos-

torder fashion based on a whole program function/loop tree. At this point compound nodes consist of either

functions or loops. The current implementation is based on the simple iterative algorithm from [1]. Each data-

dependence edge in the PDG is annotated with the following fields: (i) loop-carried bitmask that designates

the loop-levels which carry the relevant dependencies, (ii) intra-iteration dependency bitmask, and (iii) mean

size of the data communicated between the adjacent nodes per iteration at each level.

2.2. Top-Down Hierarchical Pipeline Stage Partitioning

Most applications that exhibit pipeline parallelism will only have a small number of dominating stages.

When targeting CMPs with high number of cores this factor will eventually limit the maximum attainable
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1 while ( (n = read f i le ( inf , data ) ) != EOF) {
2 for ( blk=0; blk<n; blk++) {
3 coef [ blk ] = decode( data , blk ) ;
4 raw data [ blk ] = inv transform ( coef , blk ) ;
5 }
6 out data = enhance fi l ter ( raw data ) ;
7 wr i te f i l e ( outf , out data ) ;
8 } /∗ while ∗/

Figure 5.

3.6. Code generation and runtime system

Inter-stage and intra-stage privatization In the case of
stage replication besides the data causing inter-stage de-
pendencies, we should also consider the intra-stage loop-
carried dependencies which store temporary data are sub-
sequently killed by writes before their use in a following
iteration.

Implementation details Single-producer/single-
consumer lock-free queues to communicate pointer
values. Use of a special value that specifies the last item
of the list. Reduces cache-line invalidations which occur
when polling on a variable modified by producer (number
of items). Implementation similar to [5].

Thread-local storage vs. thread-id indexing

4. Empirical evaluation

Execution platform We evaluated our proposal on a
shared memory architecture (Dual quad-core Intel Xeon).
The configuration of the targeted system is given in table 1.

4.1. Case studies

MPEG-2 video decoding (EEMBC 2.0) implements the
broadly used international standard for motion video com-
pression. At an algorithmic level, MPEG-2 decoding fea-
tures multiple processing stages (e.g. coefficient decod-
ing, saturation control, motion compensation) which suc-
cessively operate on the encoded input stream of frames on

C1: Intel Xeon Server
Hardware Dual Socket, Intel Xeon X5450 @ 3.00GHz

2 Quad-cores, 8 cores in total
32KB I-cache & 32KB write-back D-cache
6MB L2-cache shared/2 cores (12MB/chip)

16GB DDR2 SDRAM
O.S 64-bit Scientific Linux with kernel 2.6.18 x86 64
Compiler GNU gcc 4.2.1

-O3 -march=core2

Table 1. Hardware and software configuration details of
the evaluation platform.

different levels of granularities (e.g. frames, slices, compo-
nents, macro-blocks). The main factor that limits the paral-
lelisation of MPEG-2 to more cores is that despite the large
number of algorithmic steps, these are highly unbalanced.
Coefficient decoding, motion compensation and output for-
mat conversion are dominating the decoding process. Most
of these components exhibit additional finer-grain data and
instruction-level parallelism, traditionally exploited by of-
floading to SIMD or customized accelerators. Although
analyses uncovered most of these opportunities, it is clear
that the majority is not amendable to thread-level paralleli-
sation. A case worth mentioning, is the output format con-
version function, it forms a two-way task-parallel pattern
nested in the final pipeline stage. We experimented with
two alternative implementation schemes. The first is using
the default code generation process by splitting the paral-
lel tasks to two successive pipeline stages and a second one
uses OpenMP parallel regions. Both improved the execu-
tion time of the specific stage, albeit without having any
significant impact on the overall speedup. This is mainly
because the other stages consist of SCC’s and thus hamper
the pipeline’s throughput.

bzip2 encoding (SPEC2000) implements a lossless,
block-sorting data compressor. It exhibits a typical pipeline
structure which operates on constant size (but variable
across successive data-blocks and consists roughly of the
following stages: (i) input and Run-Length Encoding which
is inherently sequential, (ii) independently compresses each
block by performing a Burrows-Wheeler transform on , and
(iii) MTF transform and (iv) output. The high-level algo-
rithmic view is pretty clear and the independent process-
ing of constant sized blocks lends itself to stage replica-
tion. However, the extensive use of dynamic memory al-
location, pointer arithmetic (e.g. arrays indexes with values
[−1, N − 1]) and pointer aliasing (e.g. pointers of different
types are used to access the same allocated buffer) hamper
parallelisation. Detailed IR-profiling information in com-
bination to the simple runtime-disambiguation mechanism
described in section 3.6 In addition, the approach of selec-
tively unfolding function nodes effectively allowed to de-
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tribute the internal nodes of an unfolded inner loop level

to different partitions and largely disregards the code gen-

eration intricacies. Then, as part of the PDG → CFG
transformation, the replication of the additional control de-

pendencies that determine the execution of all the internal

nodes transparently result in the replication of the control-

flow of the inner-loop to multiple threads. The progress/ter-

mination of the replicated loops is determined by control-

replicating variables which are pushed from the preceding

stage, just like in the case of single-level partitioning.

2.5 Parallel Code Generation and Runtime
System

The code generation process (figure 3) inputs the parti-

tioned pipeline specification and the original procedure-level

Cfgs. Parallel code generation is then performed on the

Cfg for each procedure at the middle-level Ir in the CoSy
compiler.

The description of the code generation process that follows

is based on the example code in figure 5. On the left hand,

the annotations refer to the contribution (in %) of each state-

ment in relation to the whole program execution time. The

initial Cfg which is used for the profiling stage as well as

parallelization is shown in figure 5(a). Basic blocks with just

one unconditional control statement (e.g. bb4, bb5 ) are place

holders for loop control structures which are not present (e.g.

test and increment block respectively) and are inserted by

the initial control flow analysis pass. These blocks are later

utilized for injecting communication code.

Control-Flow.
First, the algorithm computes the set of Bbs (V a

s ) of the

original Cfg which include the control instructions that de-

termine the execution of the Bbs in the current pipeline

stage s (line 2). This control-replication set of Bbs can

be computed as the union of the vertexes in Pdg that are

backwards-reachable from any vertex in s using control-

dependence edges only. In figure 5, for stage 1 this is V r
2 {bb1,

bb8}. Then, we create a new function with a subgraph of the

original Cfg that includes both the blocks assigned to stage

s by the partitioner V a
s and the control-replication blocks

V r
s (line 8). The subgraph includes every edge connecting

vertexes in Vs, but also edges that substitute dangling out-

going edges. We redirect these edges to the deepest ancestor

of the missing vertex in the post-dominance tree of the origi-

nal graph (lines 5-7). For instance, in stage 1 of the previous

example the edge (bb1, bb7) is replaced by edge (bb1, bb2) as

shown in figure 5(c). The final step is to add Ir statements

that capture the outcome of the conditional-control state-

ments of Bbs in V a
s which are control-replication Bbs for any

of the subsequent stages (line 9). For each such conditional-

control statement a new local variable, predicate, is defined.

The predicate is assigned the value of the conditional expres-

sion found in the control statement. This transformation

enables us to communicate predicate values to all the equiv-

alent control-replicating Bbs by utilizing a single, uniform

pipeline data-flow mechanism (line 12).

Privatization.
In line 10 any references to local

1
variables or arguments

of the original function are patched to refer to thread private

data. For every such variable referenced in the body of an

outlined stage function a new local, stack-allocated variable

is defined. Aggregate-typed variables (structures or arrays)

might be changed to pointer-to-original-type variables to fa-

1
Terminology regarding variable or object visibility, storage,

etc. is based on the language-portable IR of the compiler

and not the one of ISO C. Nevertheless, the usage of terms

should be clear enough from its context.

Sequential CFG

n ! read_file()

goto bb1

bb0

if n!=-1 bb7 : bb6

bb1

blk := 0

goto bb8

bb7

if blk<n bb9 : bb2

bb8

call decode()

goto bb10

bb9

call inv_transform()

goto bb11

bb10

blk := blk + 1

goto bb8

bb11

 

bb6

goto bb0

bb5

goto bb5

bb4

call write_file()

goto bb4

bb3

call enhance_filter()

goto bb3

bb2
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Sequential CFG

Algorithm 1: Top-down parallelism selection.Algorithm 1: Top-down parallelism selection.

Input
· L, F : loop and function set respectively

· CTREE: tree of compound nodes

· L0: virtual top-most loop

· Ldoall: profitable DOALL loops

· Wi : ∀i ∈ CTREE, profiled weight of i
· np: # of available cores

Result
· Pdoall: selected DOALL loops

· Ppipe: selected pipelined loops

Data
· Q: work queue

Procedure top down parallelize
Q ← {L0} ;1
while Q �= ∅ do2

c ← Q.poll();3
if (c ∈ Ldoall) ∧ (Wc > thresholddoall) then4

add c in Pdoall;5
else if (c ∈ L) ∧ (Wc > thresholdpipe) then6

(P, Wpipe) ←find pipeline(c, np);7
if Sc �= ∅ ∧Wc/Wpipe > thresholdspeedup then8

add c in Ppipe;9
else

Q.add(children of c in CTREE);10
else if (c ∈ F ) ∧ (Wc > threshold) then11

Q.add(children of c in CTREE);12
end

containing a function call site in addition to the maximum recursively defined set of BBs that the specific

function call includes, (ii) the set of BBs belonging to a loop (loop-structure information is based on a variant

of standard control flowgraph analysis performed before the instrumentation pass) (iii) a Strongly Connected

Component (SCC) containing other compound nodes or single BBs.

The PDG is initially computed for the whole program and then compound nodes are formed in a pos-

torder fashion based on a whole program function/loop tree. At this point compound nodes consist of either

functions or loops. The current implementation is based on the simple iterative algorithm from [1]. Each data-

dependence edge in the PDG is annotated with the following fields: (i) loop-carried bitmask that designates

the loop-levels which carry the relevant dependencies, (ii) intra-iteration dependency bitmask, and (iii) mean

size of the data communicated between the adjacent nodes per iteration at each level.

2.2. Top-Down Hierarchical Pipeline Stage Partitioning

Most applications that exhibit pipeline parallelism will only have a small number of dominating stages.

When targeting CMPs with high number of cores this factor will eventually limit the maximum attainable
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3.6. Code generation and runtime system

Inter-stage and intra-stage privatization In the case of
stage replication besides the data causing inter-stage de-
pendencies, we should also consider the intra-stage loop-
carried dependencies which store temporary data are sub-
sequently killed by writes before their use in a following
iteration.

Implementation details Single-producer/single-
consumer lock-free queues to communicate pointer
values. Use of a special value that specifies the last item
of the list. Reduces cache-line invalidations which occur
when polling on a variable modified by producer (number
of items). Implementation similar to [5].

Thread-local storage vs. thread-id indexing

4. Empirical evaluation

Execution platform We evaluated our proposal on a
shared memory architecture (Dual quad-core Intel Xeon).
The configuration of the targeted system is given in table 1.

4.1. Case studies

MPEG-2 video decoding (EEMBC 2.0) implements the
broadly used international standard for motion video com-
pression. At an algorithmic level, MPEG-2 decoding fea-
tures multiple processing stages (e.g. coefficient decod-
ing, saturation control, motion compensation) which suc-
cessively operate on the encoded input stream of frames on
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different levels of granularities (e.g. frames, slices, compo-
nents, macro-blocks). The main factor that limits the paral-
lelisation of MPEG-2 to more cores is that despite the large
number of algorithmic steps, these are highly unbalanced.
Coefficient decoding, motion compensation and output for-
mat conversion are dominating the decoding process. Most
of these components exhibit additional finer-grain data and
instruction-level parallelism, traditionally exploited by of-
floading to SIMD or customized accelerators. Although
analyses uncovered most of these opportunities, it is clear
that the majority is not amendable to thread-level paralleli-
sation. A case worth mentioning, is the output format con-
version function, it forms a two-way task-parallel pattern
nested in the final pipeline stage. We experimented with
two alternative implementation schemes. The first is using
the default code generation process by splitting the paral-
lel tasks to two successive pipeline stages and a second one
uses OpenMP parallel regions. Both improved the execu-
tion time of the specific stage, albeit without having any
significant impact on the overall speedup. This is mainly
because the other stages consist of SCC’s and thus hamper
the pipeline’s throughput.

bzip2 encoding (SPEC2000) implements a lossless,
block-sorting data compressor. It exhibits a typical pipeline
structure which operates on constant size (but variable
across successive data-blocks and consists roughly of the
following stages: (i) input and Run-Length Encoding which
is inherently sequential, (ii) independently compresses each
block by performing a Burrows-Wheeler transform on , and
(iii) MTF transform and (iv) output. The high-level algo-
rithmic view is pretty clear and the independent process-
ing of constant sized blocks lends itself to stage replica-
tion. However, the extensive use of dynamic memory al-
location, pointer arithmetic (e.g. arrays indexes with values
[−1, N − 1]) and pointer aliasing (e.g. pointers of different
types are used to access the same allocated buffer) hamper
parallelisation. Detailed IR-profiling information in com-
bination to the simple runtime-disambiguation mechanism
described in section 3.6 In addition, the approach of selec-
tively unfolding function nodes effectively allowed to de-
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eration intricacies. Then, as part of the PDG → CFG
transformation, the replication of the additional control de-

pendencies that determine the execution of all the internal

nodes transparently result in the replication of the control-
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mination of the replicated loops is determined by control-

replicating variables which are pushed from the preceding

stage, just like in the case of single-level partitioning.

2.5 Parallel Code Generation and Runtime
System

The code generation process (figure 3) inputs the parti-

tioned pipeline specification and the original procedure-level

Cfgs. Parallel code generation is then performed on the
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compiler.
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s by the partitioner V a
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s (line 8). The subgraph includes every edge connecting

vertexes in Vs, but also edges that substitute dangling out-

going edges. We redirect these edges to the deepest ancestor

of the missing vertex in the post-dominance tree of the origi-

nal graph (lines 5-7). For instance, in stage 1 of the previous

example the edge (bb1, bb7) is replaced by edge (bb1, bb2) as

shown in figure 5(c). The final step is to add Ir statements

that capture the outcome of the conditional-control state-

ments of Bbs in V a
s which are control-replication Bbs for any

of the subsequent stages (line 9). For each such conditional-

control statement a new local variable, predicate, is defined.

The predicate is assigned the value of the conditional expres-

sion found in the control statement. This transformation

enables us to communicate predicate values to all the equiv-

alent control-replicating Bbs by utilizing a single, uniform

pipeline data-flow mechanism (line 12).

Privatization.
In line 10 any references to local

1
variables or arguments

of the original function are patched to refer to thread private

data. For every such variable referenced in the body of an

outlined stage function a new local, stack-allocated variable

is defined. Aggregate-typed variables (structures or arrays)

might be changed to pointer-to-original-type variables to fa-
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Terminology regarding variable or object visibility, storage,
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and not the one of ISO C. Nevertheless, the usage of terms
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Algorithm 1: Top-down parallelism selection.Algorithm 1: Top-down parallelism selection.

Input
· L, F : loop and function set respectively

· CTREE: tree of compound nodes

· L0: virtual top-most loop

· Ldoall: profitable DOALL loops

· Wi : ∀i ∈ CTREE, profiled weight of i
· np: # of available cores

Result
· Pdoall: selected DOALL loops

· Ppipe: selected pipelined loops

Data
· Q: work queue

Procedure top down parallelize
Q ← {L0} ;1
while Q �= ∅ do2

c ← Q.poll();3
if (c ∈ Ldoall) ∧ (Wc > thresholddoall) then4

add c in Pdoall;5
else if (c ∈ L) ∧ (Wc > thresholdpipe) then6

(P, Wpipe) ←find pipeline(c, np);7
if Sc �= ∅ ∧Wc/Wpipe > thresholdspeedup then8

add c in Ppipe;9
else

Q.add(children of c in CTREE);10
else if (c ∈ F ) ∧ (Wc > threshold) then11

Q.add(children of c in CTREE);12
end

containing a function call site in addition to the maximum recursively defined set of BBs that the specific

function call includes, (ii) the set of BBs belonging to a loop (loop-structure information is based on a variant

of standard control flowgraph analysis performed before the instrumentation pass) (iii) a Strongly Connected

Component (SCC) containing other compound nodes or single BBs.

The PDG is initially computed for the whole program and then compound nodes are formed in a pos-

torder fashion based on a whole program function/loop tree. At this point compound nodes consist of either

functions or loops. The current implementation is based on the simple iterative algorithm from [1]. Each data-

dependence edge in the PDG is annotated with the following fields: (i) loop-carried bitmask that designates

the loop-levels which carry the relevant dependencies, (ii) intra-iteration dependency bitmask, and (iii) mean

size of the data communicated between the adjacent nodes per iteration at each level.

2.2. Top-Down Hierarchical Pipeline Stage Partitioning

Most applications that exhibit pipeline parallelism will only have a small number of dominating stages.

When targeting CMPs with high number of cores this factor will eventually limit the maximum attainable
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1 while ( (n = read f i le ( inf , data ) ) != EOF) {
2 for ( blk=0; blk<n; blk++) {
3 coef [ blk ] = decode( data , blk ) ;
4 raw data [ blk ] = inv transform ( coef , blk ) ;
5 }
6 out data = enhance fi l ter ( raw data ) ;
7 wr i te f i l e ( outf , out data ) ;
8 } /∗ while ∗/

Figure 5.

3.6. Code generation and runtime system

Inter-stage and intra-stage privatization In the case of
stage replication besides the data causing inter-stage de-
pendencies, we should also consider the intra-stage loop-
carried dependencies which store temporary data are sub-
sequently killed by writes before their use in a following
iteration.

Implementation details Single-producer/single-
consumer lock-free queues to communicate pointer
values. Use of a special value that specifies the last item
of the list. Reduces cache-line invalidations which occur
when polling on a variable modified by producer (number
of items). Implementation similar to [5].

Thread-local storage vs. thread-id indexing

4. Empirical evaluation

Execution platform We evaluated our proposal on a
shared memory architecture (Dual quad-core Intel Xeon).
The configuration of the targeted system is given in table 1.

4.1. Case studies

MPEG-2 video decoding (EEMBC 2.0) implements the
broadly used international standard for motion video com-
pression. At an algorithmic level, MPEG-2 decoding fea-
tures multiple processing stages (e.g. coefficient decod-
ing, saturation control, motion compensation) which suc-
cessively operate on the encoded input stream of frames on

C1: Intel Xeon Server
Hardware Dual Socket, Intel Xeon X5450 @ 3.00GHz

2 Quad-cores, 8 cores in total
32KB I-cache & 32KB write-back D-cache
6MB L2-cache shared/2 cores (12MB/chip)

16GB DDR2 SDRAM
O.S 64-bit Scientific Linux with kernel 2.6.18 x86 64
Compiler GNU gcc 4.2.1

-O3 -march=core2

Table 1. Hardware and software configuration details of
the evaluation platform.

different levels of granularities (e.g. frames, slices, compo-
nents, macro-blocks). The main factor that limits the paral-
lelisation of MPEG-2 to more cores is that despite the large
number of algorithmic steps, these are highly unbalanced.
Coefficient decoding, motion compensation and output for-
mat conversion are dominating the decoding process. Most
of these components exhibit additional finer-grain data and
instruction-level parallelism, traditionally exploited by of-
floading to SIMD or customized accelerators. Although
analyses uncovered most of these opportunities, it is clear
that the majority is not amendable to thread-level paralleli-
sation. A case worth mentioning, is the output format con-
version function, it forms a two-way task-parallel pattern
nested in the final pipeline stage. We experimented with
two alternative implementation schemes. The first is using
the default code generation process by splitting the paral-
lel tasks to two successive pipeline stages and a second one
uses OpenMP parallel regions. Both improved the execu-
tion time of the specific stage, albeit without having any
significant impact on the overall speedup. This is mainly
because the other stages consist of SCC’s and thus hamper
the pipeline’s throughput.

bzip2 encoding (SPEC2000) implements a lossless,
block-sorting data compressor. It exhibits a typical pipeline
structure which operates on constant size (but variable
across successive data-blocks and consists roughly of the
following stages: (i) input and Run-Length Encoding which
is inherently sequential, (ii) independently compresses each
block by performing a Burrows-Wheeler transform on , and
(iii) MTF transform and (iv) output. The high-level algo-
rithmic view is pretty clear and the independent process-
ing of constant sized blocks lends itself to stage replica-
tion. However, the extensive use of dynamic memory al-
location, pointer arithmetic (e.g. arrays indexes with values
[−1, N − 1]) and pointer aliasing (e.g. pointers of different
types are used to access the same allocated buffer) hamper
parallelisation. Detailed IR-profiling information in com-
bination to the simple runtime-disambiguation mechanism
described in section 3.6 In addition, the approach of selec-
tively unfolding function nodes effectively allowed to de-
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tribute the internal nodes of an unfolded inner loop level

to different partitions and largely disregards the code gen-

eration intricacies. Then, as part of the PDG → CFG
transformation, the replication of the additional control de-

pendencies that determine the execution of all the internal

nodes transparently result in the replication of the control-

flow of the inner-loop to multiple threads. The progress/ter-

mination of the replicated loops is determined by control-

replicating variables which are pushed from the preceding

stage, just like in the case of single-level partitioning.

2.5 Parallel Code Generation and Runtime
System

The code generation process (figure 3) inputs the parti-

tioned pipeline specification and the original procedure-level

Cfgs. Parallel code generation is then performed on the

Cfg for each procedure at the middle-level Ir in the CoSy
compiler.

The description of the code generation process that follows

is based on the example code in figure 5. On the left hand,

the annotations refer to the contribution (in %) of each state-

ment in relation to the whole program execution time. The

initial Cfg which is used for the profiling stage as well as

parallelization is shown in figure 5(a). Basic blocks with just

one unconditional control statement (e.g. bb4, bb5 ) are place

holders for loop control structures which are not present (e.g.

test and increment block respectively) and are inserted by

the initial control flow analysis pass. These blocks are later

utilized for injecting communication code.

Control-Flow.
First, the algorithm computes the set of Bbs (V a

s ) of the

original Cfg which include the control instructions that de-

termine the execution of the Bbs in the current pipeline

stage s (line 2). This control-replication set of Bbs can

be computed as the union of the vertexes in Pdg that are

backwards-reachable from any vertex in s using control-

dependence edges only. In figure 5, for stage 1 this is V r
2 {bb1,

bb8}. Then, we create a new function with a subgraph of the

original Cfg that includes both the blocks assigned to stage

s by the partitioner V a
s and the control-replication blocks

V r
s (line 8). The subgraph includes every edge connecting

vertexes in Vs, but also edges that substitute dangling out-

going edges. We redirect these edges to the deepest ancestor

of the missing vertex in the post-dominance tree of the origi-

nal graph (lines 5-7). For instance, in stage 1 of the previous

example the edge (bb1, bb7) is replaced by edge (bb1, bb2) as

shown in figure 5(c). The final step is to add Ir statements

that capture the outcome of the conditional-control state-

ments of Bbs in V a
s which are control-replication Bbs for any

of the subsequent stages (line 9). For each such conditional-

control statement a new local variable, predicate, is defined.

The predicate is assigned the value of the conditional expres-

sion found in the control statement. This transformation

enables us to communicate predicate values to all the equiv-

alent control-replicating Bbs by utilizing a single, uniform

pipeline data-flow mechanism (line 12).

Privatization.
In line 10 any references to local

1
variables or arguments

of the original function are patched to refer to thread private

data. For every such variable referenced in the body of an

outlined stage function a new local, stack-allocated variable

is defined. Aggregate-typed variables (structures or arrays)

might be changed to pointer-to-original-type variables to fa-

1
Terminology regarding variable or object visibility, storage,

etc. is based on the language-portable IR of the compiler

and not the one of ISO C. Nevertheless, the usage of terms

should be clear enough from its context.
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Algorithm 1: Top-down parallelism selection.Algorithm 1: Top-down parallelism selection.

Input
· L, F : loop and function set respectively

· CTREE: tree of compound nodes

· L0: virtual top-most loop

· Ldoall: profitable DOALL loops

· Wi : ∀i ∈ CTREE, profiled weight of i
· np: # of available cores

Result
· Pdoall: selected DOALL loops

· Ppipe: selected pipelined loops

Data
· Q: work queue

Procedure top down parallelize
Q ← {L0} ;1
while Q �= ∅ do2

c ← Q.poll();3
if (c ∈ Ldoall) ∧ (Wc > thresholddoall) then4

add c in Pdoall;5
else if (c ∈ L) ∧ (Wc > thresholdpipe) then6

(P, Wpipe) ←find pipeline(c, np);7
if Sc �= ∅ ∧Wc/Wpipe > thresholdspeedup then8

add c in Ppipe;9
else

Q.add(children of c in CTREE);10
else if (c ∈ F ) ∧ (Wc > threshold) then11

Q.add(children of c in CTREE);12
end

containing a function call site in addition to the maximum recursively defined set of BBs that the specific

function call includes, (ii) the set of BBs belonging to a loop (loop-structure information is based on a variant

of standard control flowgraph analysis performed before the instrumentation pass) (iii) a Strongly Connected

Component (SCC) containing other compound nodes or single BBs.

The PDG is initially computed for the whole program and then compound nodes are formed in a pos-

torder fashion based on a whole program function/loop tree. At this point compound nodes consist of either

functions or loops. The current implementation is based on the simple iterative algorithm from [1]. Each data-

dependence edge in the PDG is annotated with the following fields: (i) loop-carried bitmask that designates

the loop-levels which carry the relevant dependencies, (ii) intra-iteration dependency bitmask, and (iii) mean

size of the data communicated between the adjacent nodes per iteration at each level.
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Most applications that exhibit pipeline parallelism will only have a small number of dominating stages.

When targeting CMPs with high number of cores this factor will eventually limit the maximum attainable
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function call includes, (ii) the set of BBs belonging to a loop (loop-structure information is based on a variant

of standard control flowgraph analysis performed before the instrumentation pass) (iii) a Strongly Connected

Component (SCC) containing other compound nodes or single BBs.

The PDG is initially computed for the whole program and then compound nodes are formed in a pos-

torder fashion based on a whole program function/loop tree. At this point compound nodes consist of either

functions or loops. The current implementation is based on the simple iterative algorithm from [1]. Each data-

dependence edge in the PDG is annotated with the following fields: (i) loop-carried bitmask that designates

the loop-levels which carry the relevant dependencies, (ii) intra-iteration dependency bitmask, and (iii) mean

size of the data communicated between the adjacent nodes per iteration at each level.

2.2. Top-Down Hierarchical Pipeline Stage Partitioning

Most applications that exhibit pipeline parallelism will only have a small number of dominating stages.

When targeting CMPs with high number of cores this factor will eventually limit the maximum attainable
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1 while ( (n = read f i le ( inf , data ) ) != EOF) {
2 for ( blk=0; blk<n; blk++) {
3 coef [ blk ] = decode( data , blk ) ;
4 raw data [ blk ] = inv transform ( coef , blk ) ;
5 }
6 out data = enhance fi l ter ( raw data ) ;
7 wr i te f i l e ( outf , out data ) ;
8 } /∗ while ∗/

Figure 5.

3.6. Code generation and runtime system

Inter-stage and intra-stage privatization In the case of
stage replication besides the data causing inter-stage de-
pendencies, we should also consider the intra-stage loop-
carried dependencies which store temporary data are sub-
sequently killed by writes before their use in a following
iteration.

Implementation details Single-producer/single-
consumer lock-free queues to communicate pointer
values. Use of a special value that specifies the last item
of the list. Reduces cache-line invalidations which occur
when polling on a variable modified by producer (number
of items). Implementation similar to [5].

Thread-local storage vs. thread-id indexing

4. Empirical evaluation

Execution platform We evaluated our proposal on a
shared memory architecture (Dual quad-core Intel Xeon).
The configuration of the targeted system is given in table 1.

4.1. Case studies

MPEG-2 video decoding (EEMBC 2.0) implements the
broadly used international standard for motion video com-
pression. At an algorithmic level, MPEG-2 decoding fea-
tures multiple processing stages (e.g. coefficient decod-
ing, saturation control, motion compensation) which suc-
cessively operate on the encoded input stream of frames on

C1: Intel Xeon Server
Hardware Dual Socket, Intel Xeon X5450 @ 3.00GHz

2 Quad-cores, 8 cores in total
32KB I-cache & 32KB write-back D-cache
6MB L2-cache shared/2 cores (12MB/chip)

16GB DDR2 SDRAM
O.S 64-bit Scientific Linux with kernel 2.6.18 x86 64
Compiler GNU gcc 4.2.1

-O3 -march=core2

Table 1. Hardware and software configuration details of
the evaluation platform.

different levels of granularities (e.g. frames, slices, compo-
nents, macro-blocks). The main factor that limits the paral-
lelisation of MPEG-2 to more cores is that despite the large
number of algorithmic steps, these are highly unbalanced.
Coefficient decoding, motion compensation and output for-
mat conversion are dominating the decoding process. Most
of these components exhibit additional finer-grain data and
instruction-level parallelism, traditionally exploited by of-
floading to SIMD or customized accelerators. Although
analyses uncovered most of these opportunities, it is clear
that the majority is not amendable to thread-level paralleli-
sation. A case worth mentioning, is the output format con-
version function, it forms a two-way task-parallel pattern
nested in the final pipeline stage. We experimented with
two alternative implementation schemes. The first is using
the default code generation process by splitting the paral-
lel tasks to two successive pipeline stages and a second one
uses OpenMP parallel regions. Both improved the execu-
tion time of the specific stage, albeit without having any
significant impact on the overall speedup. This is mainly
because the other stages consist of SCC’s and thus hamper
the pipeline’s throughput.

bzip2 encoding (SPEC2000) implements a lossless,
block-sorting data compressor. It exhibits a typical pipeline
structure which operates on constant size (but variable
across successive data-blocks and consists roughly of the
following stages: (i) input and Run-Length Encoding which
is inherently sequential, (ii) independently compresses each
block by performing a Burrows-Wheeler transform on , and
(iii) MTF transform and (iv) output. The high-level algo-
rithmic view is pretty clear and the independent process-
ing of constant sized blocks lends itself to stage replica-
tion. However, the extensive use of dynamic memory al-
location, pointer arithmetic (e.g. arrays indexes with values
[−1, N − 1]) and pointer aliasing (e.g. pointers of different
types are used to access the same allocated buffer) hamper
parallelisation. Detailed IR-profiling information in com-
bination to the simple runtime-disambiguation mechanism
described in section 3.6 In addition, the approach of selec-
tively unfolding function nodes effectively allowed to de-
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Figure 4: Source code for the example in

figure 5

tribute the internal nodes of an unfolded inner loop level

to different partitions and largely disregards the code gen-

eration intricacies. Then, as part of the PDG → CFG
transformation, the replication of the additional control de-

pendencies that determine the execution of all the internal

nodes transparently result in the replication of the control-

flow of the inner-loop to multiple threads. The progress/ter-

mination of the replicated loops is determined by control-

replicating variables which are pushed from the preceding

stage, just like in the case of single-level partitioning.

2.5 Parallel Code Generation and Runtime
System

The code generation process (figure 3) inputs the parti-

tioned pipeline specification and the original procedure-level

Cfgs. Parallel code generation is then performed on the

Cfg for each procedure at the middle-level Ir in the CoSy
compiler.

The description of the code generation process that follows

is based on the example code in figure 5. On the left hand,

the annotations refer to the contribution (in %) of each state-

ment in relation to the whole program execution time. The

initial Cfg which is used for the profiling stage as well as

parallelization is shown in figure 5(a). Basic blocks with just

one unconditional control statement (e.g. bb4, bb5 ) are place

holders for loop control structures which are not present (e.g.

test and increment block respectively) and are inserted by

the initial control flow analysis pass. These blocks are later

utilized for injecting communication code.

Control-Flow.
First, the algorithm computes the set of Bbs (V a

s ) of the

original Cfg which include the control instructions that de-

termine the execution of the Bbs in the current pipeline

stage s (line 2). This control-replication set of Bbs can

be computed as the union of the vertexes in Pdg that are

backwards-reachable from any vertex in s using control-

dependence edges only. In figure 5, for stage 1 this is V r
2 {bb1,

bb8}. Then, we create a new function with a subgraph of the

original Cfg that includes both the blocks assigned to stage

s by the partitioner V a
s and the control-replication blocks

V r
s (line 8). The subgraph includes every edge connecting

vertexes in Vs, but also edges that substitute dangling out-

going edges. We redirect these edges to the deepest ancestor

of the missing vertex in the post-dominance tree of the origi-

nal graph (lines 5-7). For instance, in stage 1 of the previous

example the edge (bb1, bb7) is replaced by edge (bb1, bb2) as

shown in figure 5(c). The final step is to add Ir statements

that capture the outcome of the conditional-control state-

ments of Bbs in V a
s which are control-replication Bbs for any

of the subsequent stages (line 9). For each such conditional-

control statement a new local variable, predicate, is defined.

The predicate is assigned the value of the conditional expres-

sion found in the control statement. This transformation

enables us to communicate predicate values to all the equiv-

alent control-replicating Bbs by utilizing a single, uniform

pipeline data-flow mechanism (line 12).

Privatization.
In line 10 any references to local

1
variables or arguments

of the original function are patched to refer to thread private

data. For every such variable referenced in the body of an

outlined stage function a new local, stack-allocated variable

is defined. Aggregate-typed variables (structures or arrays)

might be changed to pointer-to-original-type variables to fa-

1
Terminology regarding variable or object visibility, storage,

etc. is based on the language-portable IR of the compiler

and not the one of ISO C. Nevertheless, the usage of terms

should be clear enough from its context.

Stage 2

Stage 1

Stage 3

Sequential CFG

 (coef)

L[-, CD]

(blk)

10
2

[0, 1]

[8, 11]

9

3 L

(out_data)

(blk)

(blk)

L[CD]

(raw_data)

 (data)

7(n)

(blk)

L[-, D]

4

5

n ! read_file()

goto bb1

bb0

if n!=-1 bb7 : bb6

bb1

blk := 0

goto bb8

bb7

if blk<n bb9 : bb2

bb8

call decode()

goto bb10

bb9

call inv_transform()

goto bb11

bb10

blk := blk + 1

goto bb8

bb11

 

bb6

goto bb0

bb5

goto bb5

bb4

call write_file()

goto bb4

bb3

call enhance_filter()

goto bb3

bb2

➊ ➋ ➌

1

➊ ➋ ➌

1

➊ ➋ ➌

1

➊ ➋ ➌

1

n ! read_file()

goto bb1

bb0

if n!=-1 bb7 : bb6

bb1

blk := 0

goto bb8

bb7

if blk<n bb9 : bb2

bb8

call decode()

goto bb10

bb9

call inv_transform()

goto bb11

bb10

blk := blk + 1

goto bb8

bb11

 

bb6

goto bb0

bb5

goto bb5

bb4

call write_file()

goto bb4

bb3

call enhance_filter()

goto bb3

bb2

➊ ➋ ➌

1

➊ ➋ ➌

1

➊ ➋ ➌

1

➊ ➋ ➌

1

n ! read_file()

goto bb1

bb0

if n!=-1 bb7 : bb6

bb1

blk := 0

goto bb8

bb7

if blk<n bb9 : bb2

bb8

call decode()

goto bb10

bb9

call inv_transform()

goto bb11

bb10

blk := blk + 1

goto bb8

bb11

 

bb6

goto bb0

bb5

goto bb5

bb4

call write_file()

goto bb4

bb3

call enhance_filter()

goto bb3

bb2

➊ ➋ ➌

1

➊ ➋ ➌

1

➊ ➋ ➌

1
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1

control & data dep.

control dep.

data dep.

Stage 1 Stage 2 Stage 3

SequentializationPDG Partitioning

replicated BB

normal BB

n ! read_file()

goto bb1

bb0

if n!=-1 bb7 : bb6

bb1

blk := 0

goto bb8

bb7

if blk<n bb9 : bb2

bb8

call decode()

goto bb10

bb9

call inv_transform()

goto bb11

bb10

blk := blk + 1

goto bb8

bb11

 

bb6

goto bb0

bb5

goto bb5

bb4

call write_file()

goto bb4

bb3

call enhance_filter()

goto bb3

bb2

n ! read_file()

goto bb1

bb0

if n!=-1 bb7 : bb6

bb1

blk := 0

goto bb8

bb7

if blk<n bb9 : bb2

bb8

call decode()

goto bb10

bb9

call inv_transform()

goto bb11

bb10

blk := blk + 1

goto bb8

bb11

 

bb6

goto bb0

bb5

goto bb5

bb4

call write_file()

goto bb4

bb3

call enhance_filter()

goto bb3

bb2

➊ ➋ ➌

1

➊ ➋ ➌

1

➊ ➋ ➌

1

➊ ➋ ➌

1

n ! read_file()

goto bb1

bb0

if n!=-1 bb7 : bb6

bb1

blk := 0

goto bb8

bb7

if blk<n bb9 : bb2

bb8

call decode()

goto bb10

bb9

call inv_transform()

goto bb11

bb10

blk := blk + 1

goto bb8

bb11

 

bb6

goto bb0

bb5

goto bb5

bb4

call write_file()

goto bb4

bb3

call enhance_filter()

goto bb3

bb2

➊ ➋ ➌

1

➊ ➋ ➌

1

➊ ➋ ➌

1
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n ! read_file()

goto bb1

bb0

pred1 := (n!=-1)

if pred1 bb7 : bb6

bb1

blk := 0

push(q1, [&coef, pred1])

goto bb8

bb7

pred2 := (blk<n)

if pred2 bb9 : bb4

bb8

call decode()

goto bb11

bb9

 push(q1, [-, pred1])

bb6

push(q2, [-, pred2])

goto bb0

bb5

goto bb5

bb4

push(q2, [blk, pred2])

blk := blk + 1

goto bb8

bb11

[coef, pred1] ! pop(q1)

goto bb1

bb0

if pred1 bb7 : bb6

bb1

goto bb8

bb7

[blk, pred2] ! pop(q2)

if pred2 bb10 : bb5

bb8

call inv_transform()

goto bb11

bb10

 push(q3, [-, pred1])

push(q3, [raw_data, pred1])

goto bb0

bb5

goto bb8

bb11

bb6

Stage1 Stage 2 Stage 3

[raw_data, pred1] ! pop(q3)

goto bb1

bb0

if pred1 bb2 : end

bb1

call write_file()

goto bb5

bb3

call enhance_filter()

goto bb3

bb2

goto bb0

bb5
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n ! read_file()

goto bb1

bb0

pred1 := (n!=-1)

if pred1 bb7 : bb6

bb1

blk := 0

push(q1, [&coef, pred1])

goto bb8

bb7

pred2 := (blk<n)

if pred2 bb9 : bb4

bb8

call decode()

goto bb11

bb9

 push(q1, [-, pred1])

bb6

push(q2, [-, pred2])

goto bb0

bb5

goto bb5

bb4

push(q2, [blk, pred2])

blk := blk + 1

goto bb8

bb11

[coef, pred1] ! pop(q1)

goto bb1

bb0

if pred1 bb7 : bb6

bb1

goto bb8

bb7

[blk, pred2] ! pop(q2)

if pred2 bb10 : bb5

bb8

call inv_transform()

goto bb11

bb10

 push(q3, [-, pred1])

push(q3, [raw_data, pred1])

goto bb0

bb5

goto bb8

bb11

bb6

Stage1 Stage 2 Stage 3

[raw_data, pred1] ! pop(q3)

goto bb1

bb0

if pred1 bb2 : end

bb1

call write_file()

goto bb5

bb3

call enhance_filter()

goto bb3

bb2

goto bb0

bb5
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n ! read_file()

goto bb1

bb0

pred1 := (n!=-1)

if pred1 bb7 : bb6

bb1

blk := 0

push(q1, [&coef, pred1])

goto bb8

bb7

pred2 := (blk<n)

if pred2 bb9 : bb4

bb8

call decode()

goto bb11

bb9

 push(q1, [-, pred1])

bb6

push(q2, [-, pred2])

goto bb0

bb5

goto bb5

bb4

push(q2, [blk, pred2])

blk := blk + 1

goto bb8

bb11

[coef, pred1] ! pop(q1)

goto bb1

bb0

if pred1 bb7 : bb6

bb1

goto bb8

bb7

[blk, pred2] ! pop(q2)

if pred2 bb10 : bb5

bb8

call inv_transform()

goto bb11

bb10

 push(q3, [-, pred1])

push(q3, [raw_data, pred1])

goto bb0

bb5

goto bb8

bb11

bb6

Stage1 Stage 2 Stage 3

[raw_data, pred1] ! pop(q3)

goto bb1

bb0

if pred1 bb2 : end

bb1

call write_file()

goto bb5

bb3

call enhance_filter()

goto bb3

bb2

goto bb0

bb5
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n ! read_file()

goto bb1

bb0

pred1 := (n!=-1)

if pred1 bb7 : bb6

bb1

blk := 0

push(q1, [&coef, pred1])

goto bb8

bb7

pred2 := (blk<n)

if pred2 bb9 : bb4

bb8

call decode()

goto bb11

bb9

 push(q1, [-, pred1])

bb6

push(q2, [-, pred2])

goto bb0

bb5

goto bb5

bb4

push(q2, [blk, pred2])

blk := blk + 1

goto bb8

bb11

[coef, pred1] ! pop(q1)

goto bb1

bb0

if pred1 bb7 : bb6

bb1

goto bb8

bb7

[blk, pred2] ! pop(q2)

if pred2 bb10 : bb5

bb8

call inv_transform()

goto bb11

bb10

 push(q3, [-, pred1])

push(q3, [raw_data, pred1])

goto bb0

bb5

goto bb8

bb11

bb6

Stage1 Stage 2 Stage 3

[raw_data, pred1] ! pop(q3)

goto bb1

bb0

if pred1 bb2 : end

bb1

call write_file()

goto bb5

bb3

call enhance_filter()

goto bb3

bb2

goto bb0

bb5
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n ! read_file()

goto bb1

bb0

pred1 := (n!=-1)

if pred1 bb7 : bb6

bb1

blk := 0

push(q1, [&coef, pred1])

goto bb8

bb7

pred2 := (blk<n)

if pred2 bb9 : bb4

bb8

call decode()

goto bb11

bb9

 push(q1, [-, pred1])

bb6

push(q2, [-, pred2])

goto bb0

bb5

goto bb5

bb4

push(q2, [blk, pred2])

blk := blk + 1

goto bb8

bb11

[coef, pred1] ! pop(q1)

goto bb1

bb0

if pred1 bb7 : bb6

bb1

goto bb8

bb7

[blk, pred2] ! pop(q2)

if pred2 bb10 : bb5

bb8

call inv_transform()

goto bb11

bb10

 push(q3, [-, pred1])

push(q3, [raw_data, pred1])

goto bb0

bb5

goto bb8

bb11

bb6

Stage1 Stage 2 Stage 3

[raw_data, pred1] ! pop(q3)

goto bb1

bb0

if pred1 bb2 : end

bb1

call write_file()

goto bb5

bb3

call enhance_filter()

goto bb3

bb2

goto bb0

bb5
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n ! read_file()

goto bb1

bb0

pred1 := (n!=-1)

if pred1 bb7 : bb6

bb1

blk := 0

push(q1, [&coef, pred1])

goto bb8

bb7

pred2 := (blk<n)

if pred2 bb9 : bb4

bb8

call decode()

goto bb11

bb9

 push(q1, [-, pred1])

bb6

push(q2, [-, pred2])

goto bb0

bb5

goto bb5

bb4

push(q2, [blk, pred2])

blk := blk + 1

goto bb8

bb11

[coef, pred1] ! pop(q1)

goto bb1

bb0

if pred1 bb7 : bb6

bb1

goto bb8

bb7

[blk, pred2] ! pop(q2)

if pred2 bb10 : bb5

bb8

call inv_transform()

goto bb11

bb10

 push(q3, [-, pred1])

push(q3, [raw_data, pred1])

goto bb0

bb5

goto bb8

bb11

bb6

Stage1 Stage 2 Stage 3

[raw_data, pred1] ! pop(q3)

goto bb1

bb0

if pred1 bb2 : end

bb1

call write_file()

goto bb5

bb3

call enhance_filter()

goto bb3

bb2

goto bb0

bb5
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n ! read_file()

goto bb1

bb0

pred1 := (n!=-1)

if pred1 bb7 : bb6

bb1

blk := 0

push(q1, [&coef, pred1])

goto bb8

bb7

pred2 := (blk<n)

if pred2 bb9 : bb4

bb8

call decode()

goto bb11

bb9

 push(q1, [-, pred1])

bb6

push(q2, [-, pred2])

goto bb0

bb5

goto bb5

bb4

push(q2, [blk, pred2])

blk := blk + 1

goto bb8

bb11

[coef, pred1] ! pop(q1)

goto bb1

bb0

if pred1 bb7 : bb6

bb1

goto bb8

bb7

[blk, pred2] ! pop(q2)

if pred2 bb10 : bb5

bb8

call inv_transform()

goto bb11

bb10

 push(q3, [-, pred1])

push(q3, [raw_data, pred1])

goto bb0

bb5

goto bb8

bb11

bb6

Stage1 Stage 2 Stage 3

[raw_data, pred1] ! pop(q3)

goto bb1

bb0

if pred1 bb2 : end

bb1

call write_file()

goto bb5

bb3

call enhance_filter()

goto bb3

bb2

goto bb0

bb5
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n ! read_file()

goto bb1

bb0

pred1 := (n!=-1)

if pred1 bb7 : bb6

bb1

blk := 0

push(q1, [&coef, pred1])

goto bb8

bb7

pred2 := (blk<n)

if pred2 bb9 : bb4

bb8

call decode()

goto bb11

bb9

 push(q1, [-, pred1])

bb6

push(q2, [-, pred2])

goto bb0

bb5

goto bb5

bb4

push(q2, [blk, pred2])

blk := blk + 1

goto bb8

bb11

[coef, pred1] ! pop(q1)

goto bb1

bb0

if pred1 bb7 : bb6

bb1

goto bb8

bb7

[blk, pred2] ! pop(q2)

if pred2 bb10 : bb5

bb8

call inv_transform()

goto bb11

bb10

 push(q3, [-, pred1])

push(q3, [raw_data, pred1])
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goto bb1

bb0

pred1 := (n!=-1)
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goto bb8
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if pred1 bb7 : bb6

bb1

goto bb8

bb7
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n ! read_file()
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goto bb8
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goto bb8
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push(q3, [raw_data, pred1])
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n ! read_file()
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goto bb8
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call decode()

goto bb11
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goto bb0
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goto bb5
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n ! read_file()
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goto bb8

bb7
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bb6

push(q2, [-, pred2])

goto bb0

bb5

goto bb5

bb4
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push(q3, [raw_data, pred1])

goto bb0

bb5

goto bb8

bb11

bb6

Stage1 Stage 2 Stage 3
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n ! read_file()

goto bb1

bb0

pred1 := (n!=-1)
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goto bb8
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pred2 := (blk<n)
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call decode()
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n ! read_file()

goto bb1
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pred1 := (n!=-1)
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bb1

blk := 0

push(q1, [&coef, pred1])

goto bb8

bb7

pred2 := (blk<n)

if pred2 bb9 : bb4

bb8

call decode()

goto bb11
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 push(q1, [-, pred1])

bb6

push(q2, [-, pred2])

goto bb0
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goto bb5
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goto bb8
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 push(q3, [-, pred1])
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n ! read_file()

goto bb1
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pred1 := (n!=-1)

if pred1 bb7 : bb6

bb1

blk := 0
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goto bb8

bb7
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if pred2 bb9 : bb4
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call decode()

goto bb11
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 push(q1, [-, pred1])
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push(q2, [-, pred2])

goto bb0
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goto bb5

bb4
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goto bb8
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goto bb0
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goto bb8
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n ! read_file()

goto bb1
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goto bb8
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if pred2 bb9 : bb4
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Stage1 Stage 2 Stage 3
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n ! read_file()

goto bb1
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goto bb8
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n ! read_file()
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bb1
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n ! read_file()
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n ! read_file()
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n ! read_file()

goto bb1
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pred1 := (n!=-1)

if pred1 bb7 : bb6
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goto bb8

bb7
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if pred2 bb9 : bb4
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call decode()

goto bb11
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n ! read_file()

goto bb1

bb0

pred1 := (n!=-1)

if pred1 bb7 : bb6

bb1

blk := 0

push(q1, [&coef, pred1])

goto bb8

bb7

pred2 := (blk<n)

if pred2 bb9 : bb4

bb8

call decode()

goto bb11

bb9

 push(q1, [-, pred1])

bb6

push(q2, [-, pred2])

goto bb0

bb5

goto bb5

bb4

push(q2, [blk, pred2])

blk := blk + 1

goto bb8

bb11

[coef, pred1] ! pop(q1)

goto bb1

bb0

if pred1 bb7 : bb6

bb1

goto bb8

bb7

[blk, pred2] ! pop(q2)

if pred2 bb10 : bb5

bb8

call inv_transform()

goto bb11

bb10

 push(q3, [-, pred1])

push(q3, [raw_data, pred1])

goto bb0

bb5

goto bb8

bb11

bb6

Stage1 Stage 2 Stage 3

[raw_data, pred1] ! pop(q3)

goto bb1

bb0

if pred1 bb2 : end

bb1

call write_file()

goto bb5

bb3

call enhance_filter()

goto bb3

bb2

goto bb0

bb5

FIN
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n ! read_file()

goto bb1

bb0

pred1 := (n!=-1)

if pred1 bb7 : bb6

bb1

blk := 0

push(q1, [&coef, pred1])

goto bb8

bb7

pred2 := (blk<n)

if pred2 bb9 : bb4

bb8

call decode()

goto bb11

bb9

 push(q1, [-, pred1])

bb6

push(q2, [-, pred2])

goto bb0

bb5

goto bb5

bb4

push(q2, [blk, pred2])

blk := blk + 1

goto bb8

bb11

[coef, pred1] ! pop(q1)

goto bb1

bb0

if pred1 bb7 : bb6

bb1

goto bb8

bb7

[blk, pred2] ! pop(q2)

if pred2 bb10 : bb5

bb8

call inv_transform()

goto bb11

bb10

 push(q3, [-, pred1])

push(q3, [raw_data, pred1])

goto bb0

bb5

goto bb8

bb11

bb6

Stage1 Stage 2 Stage 3

[raw_data, pred1] ! pop(q3)

goto bb1

bb0

if pred1 bb2 : end

bb1

call write_file()

goto bb5

bb3

call enhance_filter()

goto bb3

bb2

goto bb0

bb5

FIN
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n ! read_file()

goto bb1

bb0

pred1 := (n!=-1)

if pred1 bb7 : bb6

bb1

blk := 0

push(q1, [&coef, pred1])

goto bb8

bb7

pred2 := (blk<n)

if pred2 bb9 : bb4

bb8

call decode()

goto bb11

bb9

 push(q1, [-, pred1])

bb6

push(q2, [-, pred2])

goto bb0

bb5

goto bb5

bb4

push(q2, [blk, pred2])

blk := blk + 1

goto bb8

bb11

[coef, pred1] ! pop(q1)

goto bb1

bb0

if pred1 bb7 : bb6

bb1

goto bb8

bb7

[blk, pred2] ! pop(q2)

if pred2 bb10 : bb5

bb8

call inv_transform()

goto bb11

bb10

 push(q3, [-, pred1])

push(q3, [raw_data, pred1])

goto bb0

bb5

goto bb8

bb11

bb6

Stage1 Stage 2 Stage 3

[raw_data, pred1] ! pop(q3)

goto bb1

bb0

if pred1 bb2 : end

bb1

call write_file()

goto bb5

bb3

call enhance_filter()

goto bb3

bb2

goto bb0

bb5

FINFIN
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n ! read_file()

goto bb1

bb0

pred1 := (n!=-1)

if pred1 bb7 : bb6

bb1

blk := 0

push(q1, [&coef, pred1])

goto bb8

bb7

pred2 := (blk<n)

if pred2 bb9 : bb4

bb8

call decode()

goto bb11

bb9

 push(q1, [-, pred1])

bb6

push(q2, [-, pred2])

goto bb0

bb5

goto bb5

bb4

push(q2, [blk, pred2])

blk := blk + 1

goto bb8

bb11

[coef, pred1] ! pop(q1)

goto bb1

bb0

if pred1 bb7 : bb6

bb1

goto bb8

bb7

[blk, pred2] ! pop(q2)

if pred2 bb10 : bb5

bb8

call inv_transform()

goto bb11

bb10

 push(q3, [-, pred1])

push(q3, [raw_data, pred1])

goto bb0

bb5

goto bb8

bb11

bb6

Stage1 Stage 2 Stage 3

[raw_data, pred1] ! pop(q3)

goto bb1

bb0

if pred1 bb2 : end

bb1

call write_file()

goto bb5

bb3

call enhance_filter()

goto bb3

bb2

goto bb0

bb5

FIN FIN
FIN


