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Systems on-Chip to Systems-on-Polymer

§ Impressive progress, but we still need to

– Carry a bulky device, re-charge everyday, rely on primitive interaction, …

§ Towards self-powered mobile & wearable systems that can understand the user
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Intel Core i5 

§ Dynamic Management of Mobile Platforms

– Power – temperature dynamics

– Dynamic Management of Domain-Specific Systems-on-Chip (DSSoC)

Outline

§ Wearable Systems-on-Polymer using Flexible Hybrid Electronics

– Flexibility-aware design

– Optimal energy harvesting

– Health & activity monitoring

Huawei P8

Intel Baytrail Samsung Exynos

Custom 

prototypes

Qualcomm SnapdragonDARPA DASH
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Heterogeneity in Computing

§ Heterogeneity is pervasive from low-cost wearable devices to high-end SoCs 

– Multiple (big/little) cores, vector processing unit, GPU, video, audio, security

§ The design complexity grows faster than our ability to manage

§ Larger number of cores and knobs lead to intricate dependencies

– Different resources, such as, CPU, GPU or memory, become bottleneck as a 

function of active applications 

Applications Operating System Hardware / Firmware
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Heterogeneous SoCs

Heterogeneous Architectures

✓ Better match execution resources with application needs

✓ Improved performance, energy-efficiency

❌ Significant gap with respect to special-purpose solutions

ARM
big CPU

ARM
big CPU

ARM
big CPU

ARM
big CPU

ARM 
LITTLE CPU

ARM 
LITTLE CPU

ARM 
LITTLE CPU

ARM 
LITTLE CPU

Low-power

High-performance
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Domain-Specific SoCs

Domain-Specific Systems-on-Chip (DSSoC)

✓ Judiciously combine general-purpose, special-purpose and 

hardware accelerator cores 

✓ Highly efficient for domain applications

✓ Flexibility to execute other domains

Examples of HW Accelerators:

FFT, matrix multiplier, correlators, 

encoder/decoder, video processor … 

Low-power

High-performance

Specialized

processing

ARM
big CPU

ARM
big CPU

ARM
big CPU

ARM
big CPU

ARM 
LITTLE CPU

ARM 
LITTLE CPU

ARM 
LITTLE CPU

ARM 
LITTLE CPU

Acc-3

Acc-3

Acc-3

Acc-1 Acc-1 Acc-1 Acc-1 Acc-2 Acc-2 Acc-4
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§ Power consumption and heat dissipation are major problems for mobile platforms 

– High temperature affects user experience and reliability

– Power and temperature form a positive feedback system

Dynamic Thermal and Power Management for SoCs

Higher temperature

Positive feedback

Leakage Dynamic

Power consumption

§ Theoretically grounded and practical techniques

1. Power –temperature stability analysis

2. Online learning for GPU performance modeling and management
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Illustration: Power –Temperature Dynamics

§ A complete heat-up/cool-down cycle on Exynos 5422 SoC

§ With larger dynamic activity

1

2

3

4

Application stops

Can we prove a fixed point: 

1.Exists

2.Stable

3.Safe



10

§ We determine the existence, stability and safety of the fixed points all at runtime

Before diving into details ….

Unstable fixed point

Stable fixed point

Thermal limit Illustration

1. Derive the necessary and sufficient conditions for their existence

2. Prove the stability of the fixed point(s) and region of convergence

3. Find the maximum safe dynamic power consumption

4. Validate our approach empirically on 8-core big.LITTLE platform

All at runtime in 75.2 μs 

Implemented in the Linux 

Kernel and Userspace
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§ Temperature at a future time step is given as:

– 𝐴: Thermal Capacitance

– 𝐵: Thermal Conductance

Thermal and Power Models

𝑇! 𝑘 + 1

𝑇" 𝑘 + 1

⋮

𝑇# 𝑘 + 1
#×!

= 𝐴#×#

𝑇! 𝑘

𝑇" 𝑘

⋮

𝑇# 𝑘
#×!

+ 𝐵#×%

𝑃! 𝑘

𝑃" 𝑘

⋮

𝑃% 𝑘
%×!

𝐶!",$: Switching cap.,   𝑉$, 𝑓$: Voltage/frequency, 

𝐼%,$ : Gate leakage current 

𝜅&,$, 𝜅',$ are leakage power parameters for the 𝑖() resource

𝑃& = 𝐶'(,&𝑉&
"𝑓& + 𝐼*,&𝑉& + 𝑉&𝜅!,&𝑇&

"𝑒

+!,#
,#

𝑃& = 𝑷𝑪,𝒊 + 𝑉&𝜅!,&𝑇&
"𝑒

+!,#
,#

§ Power consumption is the sum of dynamic and 

temperature dependent leakage power

Experimental platform

Phone

§ Nonlinear MIMO system

– No closed-form solutions for this nonlinear system

§ Iterative approaches do not work

– Convergence of the system is unknown

– Recursive iterations take a long time to complete

§ Proposed approach

– Reduce to SISO model to find an initial estimate

– Use Newton’s method to solve the MIMO system
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§ Thermal safety is determined by the maximum temperature 𝑇

§ At steady state (𝒌 → ∞) we can model each hotspot as, 

where 𝑎 and 𝑏 are found using system identification

§ Substitute the power model

§ Introduce change of variables

Fixed Point Function on the SISO Model

𝑇 = max
!"#"$

𝑇#[𝑘]

𝑇 = 𝑎𝑇 + 𝑏𝑃
1 − 𝑎 𝑇 − 𝑏𝑃% = 𝑏𝑉𝜅!𝑇

&𝑒
'/
(

4𝑇 = −
𝜅&

𝑇
, . 𝛼 =

𝑏𝑃%

𝑎 − 1 𝜅&
> 0, . 𝛽 =

(𝑎 − 1)

𝑏𝑉𝜅!𝜅&

𝛽 4𝑇 1 − 𝛼 4𝑇 = 𝑒)
*(

§ With the new variables, we can write

§ Obtain the fixed point function by taking 

logarithm on both sides
𝓕 >𝑻 = 𝐥𝐧𝜷 + 𝐥𝐧 >𝑻 + 𝐥𝐧(𝟏 − 𝜶>𝑻) + >𝑻

If 𝓕 "𝑻 = 0, then there is a fixed point!
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Existence and Stability of Fixed Points

Lemma 1: ℱ 4𝑇 satisfies the following properties

– ℱ "𝑇 is concave in the interval "𝑇 ∈ (0,
!

"
)

– ℱ "𝑇 has a unique maxima at "𝑇#

Theorem 1: ℱ 4𝑇 has two fixed points 

if and only if 𝛽 ≥
&

*(0
+ 1 𝑒)

*(0

>𝑻

Fixed Point Function

𝓕
> 𝑻

−𝟒

−𝟐

𝟎

𝟐

'𝑇!

ℱ '𝑇!

Unstable 

fixed point

Stable 

fixed point

Theorem 2: Stability of fixed points

–When ℱ "𝑇 has no solution, the temperature 

iteration diverges, i.e,  "𝑇 → 0 (𝑇 → ∞)

–Where there are two fixed points, "𝑇$ ∈ 0, "𝑇#
is unstable and "𝑇% ∈ "𝑇#, 1/𝛼 is stable

>𝑻

𝓕
> 𝑻

−𝟒

−𝟐

𝟎

𝟐

4𝑇+ 4𝑇,

Safety
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§ The fixed point function can be written as

𝐟 𝑇!, … , 𝑇$ = 𝐴𝐓 + 𝐵 𝑃!, 𝑃&, … , 𝑃-
( − 𝐓 = 0

§ Find the SISO solution to find the initial solution

§ Employ Newton’s method using the SISO solution as the initial point

Extension to the MIMO Solution

Convergence in less than five iterations

§ Found the region where the convergence is guaranteed

§ Matches with experimental results

G. Bhat, S. Gumussoy, and U. Y. Ogras,  “Power-Temperature Stability and Safety Analysis for 
Multiprocessor Systems,” ACM Tran. on Embedded Comp. Sys. (ESWEEK Special Issue), October 2017

G. Bhat, S. Gumussoy, and U. Y. Ogras. "Analysis and Control of Power-Temperature Dynamics in 
Heterogeneous Multiprocessors." IEEE Transactions on Control Systems Technology (preprint 2020)
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§ Odroid-XU3 board

– Exynos 5422 Octa-core CPU

– 4 little and 4 big cores

Experimental Setup

§ Validated using 10 different apps 
running on Android 4.4.4: 

– MiBench

– Parsec

– SPEC

§ Invoked every 100 ms with the default governors

§ Our technique takes 75.2 μs

BIG CLUSTER
LITTLE CLUSTER

GPU

CORE 0 CORE 1

CORE 2 CORE 3

CORE 0 CORE 1

CORE 2 CORE 3

SAMSUNG EXYNOS 5422

MEM

ACCELERATORS
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Time Granularity of Our Predictions

§ Predictions quickly adapts to change in power consumption, 

including thermal throttling

§ Fixed point predictions match with measurement and simulation
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Benchmark
Avg. Total 
Power (W)

Avg. Dyn.
Power (W)

Empirical Fixed 
Point (℃)

Comput. Fixed 
Point (℃)

Abs. Pred. 
Error (℃)

Experiment
Duration (s)

Idle @ 1.3 GHz 0.38 0.31 51.8 52.2 0.4 3979

Idle @ 1.5 GHz 0.47 0.38 54.4 55.5 1.1 4045

Idle @ 1.8 GHz 0.70 0.59 60.2 60.1 0.1 4171

Idle @ 2.0 GHz 1.01 0.87 66.0 66.6 0.6 3413

Vortex 1.73 1.55 80.0 81.4 1.4 1989

Matrix Mult. 1.84 1.65 83.0 83.8 0.8 521

CRC32 2.04 1.83 85.0 88.5 3.5 907

Patricia 2.20 1.97 89.0 91.8 2.8 900

Blackscholes 2.42 2.17 94.0 96.6 2.6 785

Streamcluster 2.48 2.22 94.0 97.9 3.9 614

Basicmath 2.49 2.24 93.0 98.3 5.3 492

Fluidanimate 2.50 2.26 93.0 98.8 5.8 550

FFT 2.71 2.41 101.0 102.5 1.5 729

Streamcluster+CRC32 3.14 2.79 109.0 111.5 2.5 1132

Summary of Results
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Intel Core i5 

§ Dynamic Management of Mobile Platforms

– Power – temperature dynamics

– Dynamic Management of Domain-Specific Systems-on-Chip (DSSoC)

Outline

§ Wearable Systems-on-Polymer using Flexible Hybrid Electronics

– Flexibility-aware design

– Optimal energy harvesting

– Health & activity monitoring

Huawei P8

Intel Baytrail Samsung ExynosQualcomm SnapdragonDARPA DASH

Custom 

prototypes
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Harvest Full Potential of DSSoCs-1: Scheduling  

§ How to harvest the full potential of DSSoCs?

– Optimally utilize the processing elements (PEs) at runtime

– Make acceleration of domain-specific applications oblivious to developers

§ Task scheduling:

– Assign tasks to PEs to achieve optimization goals

• Minimize execution time, power dissipation, energy consumption

– Applications modeled as directed acyclic graphs (DAGs)

2 3

4 5 6

1

7

Application DAG

PE-1

PE-2

PE-3 3

Time

1

4

PE-4 2

6

5

7

Sample Schedule

S. E. Arda et al., "DS3: A System-Level Domain-Specific System-on-Chip Simulation Framework," 
in IEEE Trans. on Computers, vol. 69, no. 8, pp. 1248-1262, 1 Aug. 2020, doi: 10.1109/TC.2020.2986963. 



20

Challenges of Runtime Scheduling for DSSoC

1. Heterogeneity of the platform:

– Many scheduling choices at runtime

– NP-complete[1][2]

2. Streaming applications:

– Real-time application arrival

– Application overlap, different incoming system states

3. Various applications:

– Different task and DAG characteristics

4. Simultaneous execution of multiple applications:

– Different types of applications executing simultaneously

Goal: Perform task scheduling for multiple simultaneous 

streaming applications in heterogeneous many-core platforms 
[1] Gary, Michael R., and David S. Johnson. "Computers and Intractability: A Guide to the Theory of NP-completeness." (1979).

[2] Ullman, Jeffrey D. "NP-complete Scheduling Problems." Journal of Computer and System Sciences 10.3 (1975): 384-393.

Time

Time

Time
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Scheduling Approaches and Goals

Can we achieve near-optimal results at runtime 

with a similar cost to a heuristic?

MIP – Mixed Integer Programming

CP   – Constraint Programming

Approach / 

Metric

Optimization

(MIP / CP)
Heuristics Learning-based

Complexity

Runtime

Optimality

Arabnejad et. al, 2013

Bittencourt et. al, 2010

Topcuglu et. al, 2002

Swaminathan et. al, 2001

Rossi et. al, 2006 Mao et. al, 2016

Mao et. al, 2019

Proposed IL-based 

approach, 2020
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Key Insights & Imitation Learning (IL)-based Scheduling

1. Use optimal algorithms offline without 

being limited by runtime overheads

2. Design a policy that approximates the 

Oracle with minimum runtime overhead

3. Exploit the effectiveness of ML to learn 

from Oracle for any objective
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Key Insights & Imitation Learning (IL)-based Scheduling

1. Use optimal algorithms offline without 

being limited by runtime overheads

2. Design a policy that approximates the 

Oracle with minimum runtime overhead

3. Exploit the effectiveness of ML to learn 

from Oracle for any objective

1. Collect expert samples and construct Oracle

Optimization-based (and / or) heuristic schedulers
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Key Insights & Imitation Learning (IL)-based Scheduling

1. Use optimal algorithms offline without 

being limited by runtime overheads

2. Design a policy that approximates the 

Oracle with minimum runtime overhead

3. Exploit the effectiveness of ML to learn 

from Oracle for any objective

1. Collect expert samples and construct Oracle

Optimization-based (and / or) heuristic schedulers

2. Generate training data for IL

Encode Oracle decisions with 
selected features 

Features that 

represent the 

system state
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A. Feature Selection for State Representation

§ Goals of feature selection

– Identify the minimal set of features that:

• Lead to high training accuracy, low storage 

overhead, minimal runtime overhead

– Features must describe task, DAG (application), 

processing elements

– Represent both design-time and runtime 

behavior

§ Intuitively analyzed the factors that 

influence scheduling decisions

– Execution times, power consumption of tasks

– Task predecessor data in DAG

– Availability of processing elements

– Communication volumes
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Key Insights & Imitation Learning (IL)-based Scheduling

1. Use optimal algorithms offline without 

being limited by runtime overheads

2. Design a policy that approximates the 

Oracle with minimum runtime overhead

3. Exploit the effectiveness of ML to learn 

from Oracle for any objective

1. Collect expert samples and construct Oracle

Optimization-based (and / or) heuristic schedulers

2. Generate training data for IL

Encode Oracle decisions with 
selected features 

Features that 

represent the 

system state

3. Train IL policies and refine 

using Data Aggregation

Design the IL-scheduler

Supervised 
learning 

techniques
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Imitation Learning-based Scheduling Framework

§ A hierarchical IL-based scheduling framework for heterogeneous SoCs

§ Break down the complex scheduling problem into sub-problems

– Group identical PEs into processing clusters

– First-level IL policy: Predict cluster

– Second-level IL policies: Predict PEs within the predicted cluster

Simulator

Platform 
Config

IL Policies

Im
p

ro
v
e
 P

o
li
c
y
 

u
s
in

g
 D

A
g

g
e
r

Oracle Generation

Cluster PE

Cluster PE

IL-policy Generation

Offline

Scheduling 
Algorithms

Applications

DSSoC

Platform Configuration
Task Profiling

Online 
Runtime Evaluation

DSSoC

A. Krishnakumar, et al.  "Runtime Task Scheduling Using Imitation Learning for Heterogeneous Many-Core Systems,” 
IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 39.11 (2020): 4064-4077.
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Harvest Full Potential of DSSoCs-2: Dynamic Power Mgmt

§ Do we have to run all resources all the time?
– Selectively turn-off processors if they won’t be needed

§ Do active resource need to run at full speed?

– Dynamically scale the voltage and frequency to 

save power/energy

§ Hierarchical Dynamic Thermal-Power Management

– Level-1: IL policies predict the frequency and 

number of active cores in each cluster of the SoC

– Level-2: Regression policy predicts the execution time and 

fine-tunes L1 decisions to meet soft real-time (RT) deadlines

§ Optimization objectives:

– Improve energy efficiency

– Improve performance

– Real-time aware optimization

– Thermal-aware optimization

95ºC

Sartor, Anderson L., et al. "HiLITE: Hierarchical and Lightweight Imitation Learning for Power Management of Embedded SoCs,” 
IEEE Computer Architecture Letters, 19.1 (2020): 63-67.
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Intel Core i5 

§ Dynamic Management of Mobile Platforms

– Power – temperature dynamics

– Online learning for frequency sensitivity

Outline

§ Wearable Systems-on-Polymer using Flexible Hybrid Electronics

– Flexibility-aware design

– Optimal energy harvesting

– Health & activity monitoring

Huawei P8

Intel Baytrail Samsung ExynosQualcomm SnapdragonDARPA DASH

Custom 

prototypes
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Systems-on-Chip to Systems-on-Polymer

§ Flexible electronics refer to circuits on bendable, rollable, or elastic substrates

§ Despite impressive potential, they are significantly larger and slower

– Successful applications to displays, sensors, and solar cells

§ Emerging FHE target the limitations of flexible electronics

– Combine the capabilities of silicon ICs with the physical benefits of flexible electronics

ASU Flexible Display Center

Li
m

bo
 c

on
ce

pt
 

sm
ar

t 
ph

on
e
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§ 15% of the world’s population lives with a disability

§ 110-190 million people face significant difficulties in functioning

§ Intl. Parkinson and Movement Disorders Society Task Force on Technology:

– Low-cost and small form-factor wearable devices offer great potential 

– Enabled by advances in low power sensors, processors, communications

Health Monitoring using Mobile Devices

Current Health Practice

Health 

Professionals

Patients

Weeks

Health 

Professionals

Patients

Hardware Software APIs

Sample Applications

Open Source Platform

Commercial \ Proprietary 

Applications

User Preferences

Wearable 

Devices

Daily

Daily

OpenHealth Wearable Vision

Weeks
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Why Online Learning on Wearable Devices

§ Smartphones have been popular:

§ But they are not appropriate

– Some patients cannot even carry them

– Large power consumption & charging requirements

– Cannot provide real-time guarantees (e.g., sampling rate)

– They are not designed for this purpose

§ Existing work on wearables and smartphones

Offline Online

Data Collection 

Learning

Inference

§ Our solution
– Physically flexible wearable form-factor

– Low power & Energy-harvesting

– Adapt to new users and varying conditions
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Our Solution to Wearable Health Monitoring

• Human Activity Recognition (HAR) & Gait Analysis

– Patient rehabilitation

– Fall detection

– Physical activity promotion

Harvested &

Consumed

Energy

Energy & 

Activity

Profiling

IoT 

Device

Finite Horizon (24-hr) Optimization

Runtime 

Allocation

Closed-Loop Optimal Energy Allocation

• We address adaptation & technology challenges

1. Comfortà Flexible Hybrid Electronics (FHE)

2. Complianceà Energy Neutral Operation

3. Applicationsà Movement Disorders



• Aim to provide a common compatible HW/SW platform 

Hardware

– Ti CC26x2r microcontroller with BLE 5.0 stack

– 9-axis IMU: MPU-9250 (Accelerometer, gyroscopre, 

magnetometer)

– Flexible bending sensor and stretch sensor

– SD card slot for on-board data backup

• Software/Firmware

– Standard TI development environment

– Real time operating system (RTOS), sensor APIs, 

– Communication services

• Reference Applications (all real-time)

– Human activity recognition, gesture recognition, gait analysis

OpenHealth
An open-source HW-SW platform released to public

B
a
s
e

P
la

tf
o

r
m

Energy 

Harvesting

Base 

Sensor Hub

MCU + 

Memory

BLE / 

Zigbee

Sensor 

API

Communication 

Services

Sample 

Applications
RTOS

HW

Stack

SW

Stack

E
x
te

n
d

e
d

 

S
o

lu
ti

o
n

s

New Sensors 
(e.g., stretch)

Signal 
Processing

ML 
Algorithms

Applications

§ Energy-Harvesting & Management

– Photovoltaic (PV)-cells for ambient light

– Piezo-electric materials for human motion

– Optimum run-time enegy-allocation

34
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Y. Tuncel, et al., Towards wearable piezoelectric energy harvesting: modeling and experimental validation. In Proceedings of the 

ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED), 2020

Example: Motion Energy Harvesting
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Energy Harvesting with Flexible Photo-Voltaic (PV) Cells

§ Energy harvesting for wearable devices

– Limited battery size and weight

§ PV-cell is one of the most widely used energy 

harvesting source

– Superior outdoor (10−100mW/cm2) and good 

indoor (100 µW/cm2) power density

– Flexibility advantage for wearable applications 

Wearable IoT devices

MPPT 
controller

Battery

DC−DC converter 

VloadVharvest

8

0.50 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Voltage (V)

Flat

6

4
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0

P
o
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m
W

)

Radiation intensity 𝐺 = 1000𝑊/𝑚! elevation angle 𝛼 = 50∘

8

0.50 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Voltage (V)

Flat
Bent with R = 40 mm6

4

2

0

P
o
w

er
 (

m
W

)

0.41 V

3.38 mW

MPP
57 % 

degradation!

No analytical models that quantify the changes

MPP
§ Output power determined by 

maximum power point (MPP)

– Bending has a significant 

impact on the harvested power
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Analytical Model with Bending

§ The amount of radiation received by the flat PV-cell

𝜆 = (
()
*

)
* (

+

,

𝐺 ⋅ sin 𝛼 + 𝛽 𝑑𝑤𝑑𝑙𝜆-./0 = 𝐿 ⋅ 𝑊 ⋅ 𝐺 ⋅ sin(𝛼 + 𝛽) ⟸

𝑊
𝐿 𝐺

𝛼 elevation angle

𝛽 = 0 (inclination angle) 

for illustration

§ When a PV-cell is bent, the irradiation is not uniform across the bending axis
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Bent

𝛼Flat

𝜃: −
𝐿

2𝑅
,
𝐿

2𝑅

𝐿

Light 
Source

𝑅

𝑶

𝐿

𝑅

§ When a PV-cell is bent with a radius of curvature R

– The length of an infinitesimal cross section of the arc 𝑑𝑙 = 𝑅 ⋅ 𝑑𝜃
– The limit of 𝜃 can be found as follows

−𝐿2 = 𝑅 ⋅ 𝜃123 ⇒ 𝜃#$% = −
𝐿

2𝑅
,

𝐿
2 = 𝑅 ⋅ 𝜃1/4 ⇒ 𝜃#&' =

𝐿

2𝑅

𝜆5630 = (
()
*7

)
*7𝑅(

+

,

𝐺 ⋅ sin 𝛼 + 𝛽 + 𝜃 𝑑𝑤𝑑𝜃

α

R1

L

O

Analytical Model with Bending

Core model



39

𝜆5630.9 = (
()
*7(

)
*7( 𝑅*(

+

,

𝐺 ⋅ sin 𝛼 + 𝛽 + 𝜃 𝑑𝑤𝑑𝜃

= 2𝑊 ⋅ 𝐺 ⋅ 𝑅* sin 𝛼 + 𝛽 sin( 𝐿2𝑅*)
1: No shading

3: Both sides shaded 𝜆5630.: = (
((<=>)

@((<=>)

𝑅:(
+

,

𝐺 ⋅ sin 𝛼 + 𝛽 + 𝜃 𝑑𝑤𝑑𝜃

= 2𝑊 ⋅ 𝐺 ⋅ 𝑅:

Irradiation Models under Shading Scenarios

𝜆5630.* = (
((<=>)

)
*7) 𝑅9(

+

,

𝐺 ⋅ sin 𝛼 + 𝛽 + 𝜃 𝑑𝑤𝑑𝜃
= 𝑊 ⋅ 𝐺 ⋅ 𝑅9 1 − cos 𝛼 + 𝛽 + 𝐿

2𝑅9

2: One-side shaded

Core model

Single cell
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IPV

Io Ish

Rsh

Rs

VPV

Irec(Iph, Vd)

Vd

Additional current source 
for recombination losses

A single diode equivalent circuit

Iph

§ Equivalent circuit model for a PV-cell

– Need to consider recombination losses

– Circuit parameters are functions of our 

irradiation model

Current-Voltage Modeling and Validation

Core model

Single cell

Circuit

§ Need to validate empirically

– Commercial FlexSolarCells SP3-12

– Radiation intensity:  100~1000 𝑊/𝑚"

10

8

6

2

0.50 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Voltage (V)

0

P
o

w
er
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m

W
)

4

Measured MPPMeasured
Modeled MPPModeled

Relative 

percentage 

error of 
𝑃#$$ < 5.3%
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§ Traditional fractional open-circuit voltage (FOCV) assumes 𝑉&''/𝑉() does not vary 

significantly with radiation intensity

§ Sharma et al. the only prior work that consider impact of bending (only experimentally)

Real-Life Impact: Maximum Power Point

Proposed approact improves 

the MPPT gain by 19%

𝐺 = 1000𝑊/𝑚!, 𝑅 = 40 𝑚𝑚
5

4

3

2

1

0.50 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Voltage (V)

0

P
o
w

er
 (

m
W

)

Conventional FOCV operating point

Proposed model 

operating point 

Sharma et al. model’s MPP

Actual MPP
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Summary & Conclusions

§ We are at the edge of next transition

§ Self-powered mobile and wearable 

systems can enable the next leap forward 

§ Exciting opportunities in

– System (hardware/software) design

– Processing / learning at the edge

– Collaborative inference with the cloud

https://sites.google.com/view/openhealth-wearable-health/home

§ Our work encompasses

– Mobile and wearable computing systems

– Energy harvesting and optimal management

– SoC architecture design

– Wearable sensor applications
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Thank You!

Questions?


