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Definition: Embedded Systems

Environment

Sensor

Software Hardware

Actor

Environment

direct and ongoing interaction
with environment

reactive system: if interactions
are invoked by environment

⇒ interactions as basic
computation steps
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Example: Automotive Embedded Systems (ES)

up to 100 ES in modern cars

code size grows with a factor of 10
every four years

90% of innovations in cars by ES

≈ 30% development costs due to ES

98% of microprocessors in ES

 enormous and still growing
economic importance
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Design Problems

functional correctness  formal verification

moreover: non-functional properties

energy consumption, weight, size
real-time capabilities
reliability and fault tolerance

and heterogeneous computer architectures

multiprocessors with weak memory models
application-specific instruction sets
HW/SW integration
digital/analog components
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Many Languages – The Tower of Babel

Simulation

SystemC,Simulink,. . .

Specification

CTL,LTL,PSL,. . .

Software

C,C++,. . .

Hardware

VHDL,Verilog,. . .

problems:

many languages and architectures
no unique design methodology
manual re-implementations

 potential source of errors
 high development costs
 bad re-use of components

solution: model-based design

unique system model
automatic translations
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Goal: Model-based Design

behavioral model

???

formal specifications

CTL,LTL,PSL,. . .

simulation model

SystemC,Simulink,. . .

software

C,C++,. . .

hardware

VHDL,Verilog,. . .

verification

simulationpartitioning

synthesis
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Idea of Model-based Design

use system model independent of later architecture

translate it for particular purposes like

modeling: concurrent components with notion of time
simulation: deterministic, efficient, . . .
verification: formal semantics, . . .
analysis: formal semantics with time/resources,. . .
synthesis: automatic HW- and SW synthesis, . . .

 design space exploration for optimization

 need of a clear semantics/simple analyses

models of computation (MoC) [7, 3, 4]
explains: why, when, which atomic actions are executed
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Main Models of Computations

why, when, which atomic actions are executed:

1 data-driven systems: e.g. dataflow process networks

2 event-driven systems: e.g. hardware description languages

3 clock-driven systems: e.g. synchronous languages
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Dataflow Process Networks (DPNs)

sequential processes Pi communicate via FIFO buffers

FIFOs avoid synchronization of processes
i.e. reading can be done later than writing the data
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Operational Behavior

e.g. given by firing rules of the process nodes

nodes can fire, but do not have to fire

 no deterministic schedule for firing the nodes

but: same input streams should produce same output streams

 stream processing functions

however, this determinism is not always given (next slide)
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Example DPN

firing rules of merge

x1 x2 y

(a :: A) (b :: B) [a, b]
[] (b :: B) [b]
(a :: A) [] [a]

DPN as equations






(e, ze) = even(ze)
(o, zo) = odd(zo)
y = merge(e, o)
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Problem: Nondeterminism

behavior 1: all nodes fire asap











e 7→ []
o 7→ []
y 7→ []
ze 7→ []
zo 7→ []











odd,
even
 











e 7→ [0]
o 7→ [1]
y 7→ []
ze 7→ [0]
zo 7→ [1]











odd,
even,
merge
 











e 7→ [2]
o 7→ [3]
y 7→ [0, 1]
ze 7→ [2]
zo 7→ [3]











odd,
even,
merge
 











e 7→ [4]
o 7→ [5]
y 7→ [0, 1, 2, 3]
ze 7→ [4]
zo 7→ [5]











. . .

behavior 2: node ‘even’ does not fire at all











e 7→ []
o 7→ []
y 7→ []
ze 7→ []
zo 7→ []











odd
 











e 7→ []
o 7→ [1]
y 7→ []
ze 7→ []
zo 7→ [1]











odd,
merge
 











e 7→ []
o 7→ [3]
y 7→ [1]
ze 7→ []
zo 7→ [3]











odd,
merge
 











e 7→ []
o 7→ [5]
y 7→ [1, 3]
ze 7→ []
zo 7→ [5]











. . .
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Enforcing Determinism (Kahn [5])

Kahn’s DPNs [5]

K1: no emptiness checks:
number of values in buffers must not be checked for firing

K2: use blocking read:
reading a value from an empty buffer must wait for values

K3: use sequential functions: will be considered later

infinite computations moreover demand fairness:
each node that can fire, must eventually do so
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Boundedness of DPNs

boundedness = finite memory for FIFO buffers

boundedness is undecidable in general
but decidable for special DPNs

static DPNs

always consume the same number of values from an input x
and produce the same number of values for an output y
may be different for other inputs x ′ or other outputs y ′

cyclo-static DPNs

consumption/production numbers change periodically
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Example: Boundedness of DPNs

problem: determine static schedule for infinite repetition

let rf , rg , rh be the number of firings of nodes f , g , h

edges in DPN on the left are number of produced and
consumed values in FIFO on the edge

 balance equations









1 −2 0
0 −2 3
0 2 −3

−1 0 3









·





rf
rg
rh



 =









0
0
0
0









solution (rf , rg , rh) = (6, 3, 2) · λ

it remains to schedule these firings
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Main Models of Computations

why, when, which atomic actions are executed:

1 data-driven systems: e.g. dataflow process networks

2 event-driven systems: e.g. hardware description languages

3 clock-driven systems: e.g. synchronous languages

17 / 50



Motivation: Model-based Design
Models of Computation

The Averest Tool
Summary

Data-Driven MoCs
Event-Driven MoCs
Clock-Driven MoCs
Comparison of MoCs

Discrete Event Systems

originally developed for efficient simulation

system = set of sequential processes P1,. . . ,Pm

communication over shared variables
processes have statements to wait on events, i.e.:

a condition becomes true

a point of time has been reached

the value of a variable has been changed

process will be activated if its wait condition becomes true
then: its code is ‘elaborated’ up to the next wait condition
i.e., assignments x = τ are noted in a schedule S
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Simulation Semantics

discrete event MoC is defined by a simulator

determine next event based on schedule S
determine activated processes and elaborate these

 repeat with new schedule S ′

 computation is driven by occurrence of events

example languages:
VHDL, Verilog, SystemC, SystemVerilog, Simulink, . . .
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Example: VHDL

process of a VHDL program:

P1 : process
x ⇐ transport x + 2 after 0 ns;
x ⇐ transport x + 3 after 2 ns;
wait on x ;

end process

simulation step 1:
E = {(x , 0)}, S := {}, tcurr = 0ns
⇒ schedule S := {(0ns, x , 2), (2ns, x , 3)}

simulation step 2:
E = {(x , 2)}, S := {(2ns, x , 3)}, tcurr = 0ns
⇒ schedule S := {(0ns, x , 4), (2ns, x , 3),(2ns, x , 5)}

20 / 50



Motivation: Model-based Design
Models of Computation

The Averest Tool
Summary

Data-Driven MoCs
Event-Driven MoCs
Clock-Driven MoCs
Comparison of MoCs

Example: VHDL

process of a VHDL program:

P1 : process
x ⇐ transport x + 2 after 0 ns;
x ⇐ transport x + 3 after 2 ns;
wait on x ;

end process

simulation step 3:
E = {(x , 4)}, S := {(2ns, x , 5)}, tcurr = 0ns
⇒ schedule S := {(0ns, x , 6), (2ns, x , 5),(2ns, x , 7)}

simulation step i :
E = {(x , 2i)}, S := {(2ns, x , 2i + 1)}, tcurr = 0ns
⇒ S := {(0ns, x , 2i + 2), (2ns, x , 2i + 1),(2ns, x , 2i + 3)}

note: insertion of (0ns, x , 2i + 2) removes (2ns, x , 2i + 1)

otherwise: schedule would grow unboundedly
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Semantic Problems

two-dimensional time

several simulation steps may refer to the same physical point
of time
variables may have several values at one point of time

semantic problems

schedule S may be unbounded
physical time may stop while simulation proceeds
processes may suffer from deadlocks and livelocks

solutions may be analogous to synchronous systems
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Main Models of Computations

why, when, which atomic actions are executed:

1 data-driven systems: e.g. dataflow process networks

2 event-driven systems: e.g. hardware description languages

3 clock-driven systems: e.g. synchronous languages
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Synchronous Systems

modules have

inputs x1, . . . , xm
outputs y1, . . . , yn
and internal state variables z1, . . . , zk

computation by discrete (reaction) steps:

reactions are driven by clock ticks
read all inputs
compute output values and next internal state

distinction between micro and macro steps

macro step = reaction = variable assignment
macro steps consist of finitely many micro steps

 all micro steps are executed on the same variable assignment
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Example: Quartz Language

nothing (empty statement)
ℓ : pause (macro step)

x = τ, next(x) = τ (assignments)
if(σ) S1 else S2 (conditional)

S1; S2 (sequence)
S1 ‖ S2 (concurrency)

do S while(σ) (loop)
[weak] [immediate] abort S when(σ) (abortion)

[weak] [immediate] suspend S when(σ) (suspension)
{α x ; S} (local variable)
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Example: Quartz Program

module ABRO(?a,?b,?r,!o) {
loop

abort {
{
ℓa: await(a);
‖
ℓb: await(b);

}
o = true;
ℓr : await(r);

} when(r)

}

ℓaℓb

ℓb ℓa

ℓr

∗/o

a
b
r/
o

a
b
r/
o

a
b
r/
o

∗
b
r/
o

a
∗
r/
o

∗
∗
r/
o

∗
∗
r/
o

∗
∗
r
/
o
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Causal Execution of Micro Steps

example: synchronous program









b = true;

p : pause;
if(a) b = true;

r : pause









∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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q : pause;
if(!b) c = true;

a = true;

s : pause









equivalent automaton:

pq rs
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Causal Execution of Micro Steps

example: synchronous program









b = true;

p : pause;
if(a) b = true;

r : pause
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q : pause;
if(!b) c = true;

a = true;

s : pause









equivalent automaton:

pq rs
abc

28 / 50



Motivation: Model-based Design
Models of Computation

The Averest Tool
Summary

Data-Driven MoCs
Event-Driven MoCs
Clock-Driven MoCs
Comparison of MoCs

Causal Execution of Micro Steps

example: synchronous program
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if(!b) c = true;

a = true;

s : pause









equivalent automaton:

pq rs
abc abc
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Causal Execution of Micro Steps

example: synchronous program
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Causal Execution of Micro Steps

example: synchronous program
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Formal Semantics

causal execution: do not read variables that will be written,
but have not already been written in the macro step

is formally defined for Quartz by SOS rules (Plotkin 1981)

 directly defines a simulator

main idea

introduce value ⊥: means ‘not yet known’
initially: all inputs known, all outputs unknown
estimate:

Dmust: set of all actions that must be fired

Dcan: set of all actions that can be fired

and refine known values
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Consistency Checks of MoCs

data-driven MoCs [5, 6]:

check determinism (e.g. Kahn’s rules)
check boundedness of buffers

event-driven MoCs [2]:

check boundedness of schedule
check absence of deadlocks and livelocks

clock-driven MoCs [1]:

check causality = check sequential execution
check clock consistency if several clocks are used

 then, deterministic finite-state systems are obtained

33 / 50



Motivation: Model-based Design
Models of Computation

The Averest Tool
Summary

Data-Driven MoCs
Event-Driven MoCs
Clock-Driven MoCs
Comparison of MoCs

Advantages of MoCs

particular uses of MoCs

simulation: event-driven MoCs
verification: clock-driven MoCs
HW-Synthesis: clock-driven MoCs
SW-Synthesis (multithreaded): communicating threads
distributed systems: data-driven MoCs

transformations between MoCs are required!!
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Model-based Design Using Averest

Averest is a model-based design tool

developed at the U. Kaiserslautern (www.averest.org)

behavioral model

Quartz
formal specifications

CTL,LTL,PSL,. . .

simulation model

SystemC,Simulink,. . .

software

C,C++,. . .

hardware

VHDL,Verilog,. . .

verification

simulationpartitioning

synthesis

d
y
n
.
reco

n
fi
g
u
ra
tio

n

35 / 50



Motivation: Model-based Design
Models of Computation

The Averest Tool
Summary

Integration of MoCs via Guarded Actions
Translation to Guarded Actions
Causality Analysis
Hardware and Software Synthesis
Synthesis of Parallel Software

Intermediate Representation by Guarded Actions

intermediate representation of MoCs required

Lee and Sangiovanni-Vincentelli [7]: tagged tokens

in Averest: guarded actions (γ, α)

trigger condition γ with atomic action α

(γ, α) is enabled, if γ holds

guarded actions reduce languages to their MoC

recall MoC: when, why, which action is executed
γ is the reason (why?) for executing α (which?)
‘when’ is defined as:

synchronous MoC: execute all enabled actions

asynchronous MoC: execute some enabled actions

36 / 50



Motivation: Model-based Design
Models of Computation

The Averest Tool
Summary

Integration of MoCs via Guarded Actions
Translation to Guarded Actions
Causality Analysis
Hardware and Software Synthesis
Synthesis of Parallel Software

Translation to Guarded Actions

idea: determine condition γ for each action α

however: very difficult to do

distinction between surface and depth required
modular translation very difficult due to reincarnations etc.

 translation has been formally verified

programs of size n may yield O(n2) many guarded actions
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Causality Analysis on Guarded Actions

causality analysis can be directly done on guarded actions

using Brzozowski-Seger’s ternary simulation:

∧ ⊥ 0 1

⊥ ⊥ 0 ⊥
0 0 0 0
1 ⊥ 0 1

∨ ⊥ 0 1

⊥ ⊥ ⊥ 1
0 ⊥ 0 1
1 1 1 1

x ¬x

⊥ ⊥
0 1
1 0

all functions are monotonic w.r.t. ⊥ ⊑ 1, 0

causality analysis done by computing least fixpoint
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Example

module P15(!o1,!o2) {
o2 = true;

if(o1)

if(!o2)

o1 = true;

}

guarded actions

o1 ∧ ¬o2 ⇒ o1
1 ⇒ o2

causality analysis:

0 1 2

o1 ⊥ ⊥ 0
o2 ⊥ 1 1

 program is causal
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Equivalent Problems

stability of asynchronous circuits (ternary simulation)

check whether all signals stabilize for all input values
independent of delay time of the gates

deadlock freedom of parallel programs

threads wait on each other
problem: check whether deadlock can occur

proofs in intuitionistic logic

tertium non datur (x ∨ ¬x) cannot be proved
all proof must be constructive

three-valued logic

models progress of micro step execution
⊥: means not yet known
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Hardware Synthesis

consider guarded actions of x

(χ1, next(x) = π1), . . . , (χq, next(x) = πq)
(γ1, x = τ1), . . . , (γp, x = τp)

 compute equations with carrier variable x’:

x =















case

γ1 : τ1;
...

γp : τp;
else x’















next(x’) =















case

χ1 : π1;
...

χq : πq;
else Default(x)















 x’ stores delayed assignments of previous step
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Synthesis of Sequential Software

hardware synthesis via equation systems

one equation for each output and state variable
requires O(n2) gates
in each cycle, the complete equation system must be evaluated
optimization by high-level synthesis

sequential software

evaluation of all equations per macro step
causal order must be respected
alternative: compute EFSM and precompute equations per
control state

 potential exponential growth of code, but much faster
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Synthesis of Parallel Software

multithreaded software is asynchronous!

 translate guarded actions to DPN

one node Px for each output/state variable x

node Px computes the value of x in each macro step

 static DPN:

each node will fire once per macro step
causality ensures existence of schedule
clock is generated if all values are available

in practice: often too slow

synchronization of nodes enforced by generated clock
nodes typically wait a long time for new values
better: translation to asynchronous systems
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Optimization 1: Elimination of Passive Code

observation

not all values are not needed in some macro steps
example: if x = 0 holds, then y is not required for z = x ∧ y

 introduce new value � for analysis

� is a placeholder for a concrete, but unwanted value
� will not be computed and also not communicated

compiler optimization:

compute for every (γ, α) a condition β,
such that (γ ∧ β, α) does not change behavior
analogous to classic dataflow analysis in compilers
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Optimization 2: Replace Clock- by Data-Triggers

synchronous systems are driven by clocks

the clock is not needed if all values have to be generated in
every cycle (then, nodes are simply driven by data)

however, if passive values are suppressed,
then a clock would be again required

better: endochronous systems

these are synchronous systems that can generate their own
local clock
value of one input implicitly encodes which other values are
required
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Example: if-then-else node

x1 x2 x3 y

(1 :: A) (b :: B) (c :: C ) [b]
(0 :: A) (b :: B) (c :: C ) [c]

x1 x2 x3 y

(1 :: A) (b :: B) C [b]
(0 :: A) B (c :: C ) [c]

ξ(x1) : 1 0 0 1 1 . . .

ξ(x2) : 1 3 5 7 9 . . .

ξ(x3) : 0 2 4 6 8 . . .

ξ(y) : 1 2 4 7 9 . . .

ξ(x1) : 1 0 0 1 1 . . .

ξ(x2) : 1 � � 7 9 . . .

ξ(x3) : � 2 4 � � . . .

ξ(y) : 1 2 4 7 9 . . .

 ”‘if-then-else”’ is endochronous

x1 is always read, and determines whether x2 or x3 will be read
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Sequential Functions

sequential functions
always read one input x1
based on the value read, decide which input to read next
until enough values were read to fire the node

the following (Gustave) function is not sequential

x1 x2 x3 y
(1 :: A) (0 :: B) C [1]
A (1 :: B) (0 :: C) [1]
(0 :: A) B (1 :: C) [1]

 desynchronization
generate DPN with sequential functions from synchronous
guarded actions
these DPNs can be run asynchronously

 latency insensitive design/elastic circuits
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Boundedness for Parallel DPNs

topology matrix yields the following solutions










1 −1 0 0
−1 1 0 0
0 1 0 −1
0 0 1 −3
0 0 −1 3











r =









1
1
3
1









λ

partition into two sub-systems
S1 := {f1, f2} and S2 := {g1, g2}

 buffer (f2, g2) can overflow

 ‘backpressure’ edge from S2 to S1 required

 not necessary if T has S- and T -invariants
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Model-based Design Using Averest

system behavior given by synchronous program

precise formal semantics  formal verification possible
deterministic/reproducible simulation

 simplified WCET analysis

internal representation by guarded actions

reduce model to core of its MoC
efficient causality analysis
translation to (elastic) synchronous hardware circuits
translation to sequential software
translation to parallel software (asynchronous DPN)
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Design Tools Using Different MoCs

Ptolemy (Berkeley, USA): http://ptolemy.eecs.berkeley.edu/

Metropolis (Berkeley, USA):
http://embedded.eecs.berkeley.edu/metropolis/

ForSyDe (KTH, Schweden): http://www.ict.kth.se/forsyde/

SysteMoC (Erlangen):
http://www12.cs.fau.de/research/scd/systemoc.php

SysML und UML/MARTE

Averest (Kaiserslautern): http://www.averest.org
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