

Content

Computing increase and power challenge in (embedded) computing

- Heterogeneous multi-core architectures with dedicated accelerators
- New paradigm e.g. invasive computing

New Challenges

Memory and bandwidth

Metrics for design space exploration

- Wireless baseband processing
- Impact of memories and data transfers on metrics
- Impact of application (communications) performance on metrics

3D MPSoCs

3D memories and memory controllers

All archited technology	ctures based o @worst case,	n standa all data	ard synthesis fl in-house availa	ows, 65 able	nm	
Decoder	Flexibility	Max Block- size	Payload Throughput [Mbit/s]	Freq. [MHz]	Area [mm2]	Dynamic Power [mWatt]
ASIP (Magali)	Conv. Codes Binary TC Duo-binary TC	N=16k	40 14(6iter) 28(6iter)	385 (P&R)	0.7 (P&R)	~100
LTE Turbo (Music)	LTE turbo code	N=18k	150 (6iter)	300 (P&R)	2.1 (P&R)	~300
LDPC flex (Magali)	R=1/4 to R=9/10	N=16k	150-300 (20-10iter)	385 (P&R)	1.172 (P&R)	~389
LDPC fixed (Magali)	R=3/4	N=1.2k	480 (6iter)	435 (P&R)	0.583 (P&R)	~202
LDPC WiMedia 1.5	R=1/2-4/5	N=1.3k	640 (R=1/2,5iter) 960 (R=3/4,5iter)	265	0.51	~193
CC Decoder	64-state NSC		500	500	0.1	~37

Metric Assessment - Channel Decoders

Algorithmic Throughput Calculations [GOPs]

Code	Operations per of information bit	lecoded	Infobit-Throughput ⇔Giga operations per second [GOPs]				
	normalized to ~	8bit addition	100Mbit/s	300Mbit/s	1 Gbit/s		
CC: states=64	~200		~20	~ 60	~200		
LDPC	5 iter	75/R	~7.5/R	~22.5/R	~ 75/R		
Min-Sum	10 iter	150/R	~15/R	~ 45/R	~ 150/R		
(x3.4 appr. BP)	20 iter	300/R	~ 30/R	~ 90/R	~ 300/R		
	40 iter	600/R	~ 60/R	~ 180/R	~ 600/R		
Turbo	2 iter	280	~ 28	~ 84	~ 280		
Max-Log	4 iter	560	~ 56	~168	~ 560		
	6 iter	840	~ 84	~252	~ 840		

What about Memory/Data Transfers

Current metric: energy efficiency = only operations/energy Data transfers/ accesses substantially contribute to the power consumption

Example (R=0.5)

150 Mbit/s Turbo : ~126 Gops~40 Gaccesses150 Mbit/s LDPC : ~90 Gops~80 Gaccesses

Efficient data transfer is key for efficient implementation

- LTE TC: special interleaver structure to avoid access conflicts
- DVB-S2/WiMAX LDPC: special code structure to minimize access conflicts

Efficiency metrics based on operations only are not appropriate

- Power includes operations and accesses!
- Architectures are favored where operations dominate compared to accesses

Communications Performance

Overall efficiency of a baseband receiver depends on

- Implementation performance
- Communications performance
- Flexibility

Scenario 1: Fixed Communication performance

- Comparison of two iterative decoders with same communications performance but different parameters (codes, code rate, iterations)
- \Rightarrow impact on implementation efficiency

Scenario 2: Implementation driven

- Comparison of iterative and non-iterative decoders with varying communications performance
- 64-state convolutional code 960 Mbit/s (WiMedia 1.2) and WiMedia 1.5 LDPC decoder
- ⇒ impact on implementations efficiency

Lessons learned

- Understanding trade-offs between implementation efficiency, application performance and flexibility requirements is mandatory for efficient baseband receivers
- Operation based metrics for energy and area efficiency can be misleading
- Memory and data transfers have to be considered in metrics for design space exploration
- Implementation efficiency metrics have to be linked to application performance ⇒ trajectory

Exa	a mple: TSV are Deep tr	64Mb eas adde ench /	3D-DRA ed buried WL	M cor / Stack	e tile		64M Array
	Cell size	es: 8F ² -	- 4F ²				
	Based o	n meas	ured* & sir	nulated	data	c	OLUMN
						Control / Po	wer generators / Sign s Power & Signals
						Control / Po	wer generators / Signals
	Techn	Call	Coll	Area	Pour	Control / Po	wer generators / Sign s Power & Signals
No.	Techn. node	Cell size	Cell type	Area [mm²]	Row t _{RAS} [ns]	Control / Po TSV Row -> Col. t _{RCD} [ns]	wer generators / Sign s Power & Signals Column t _{CCD} [ns]
No.	Techn. node 75nm	Cell size 8F ²	Cell type Deep Trench	Area [mm²] 5.20	Row t _{RAS} [ns] 39.0	Row -> Col. t _{RCD} [ns] 9.30	wer generators / Sign s Power & Signals Column t _{ccD} [ns] 6.05
No. 1	Techn. node 75nm 65nm	Cell size 8F ² 6F ²	Cell type Deep Trench buried WL	Area [mm ²] 5.20 3.54	Row t _{RAS} [ns] 39.0 27.1	Control / Pc TSV Row -> Col. t _{RCD} [ns] 9.30 7.45	Column t _{ccb} [ns] 6.05
No. 1 2 3	Techn. node 75nm 65nm 58nm	Cell size 8F ² 6F ²	Cell type Deep Trench buried WL Stack	Area [mm ²] 5.20 3.54 3.00	Row t _{RAS} [ns] 39.0 27.1 31.9	Control / Pc TSV Row -> Col. t _{RCD} [ns] 9.30 7.45 7.31	wer generators / Signals s Power & Signals Column t _{ccc0} [ns] 6.05 5.42 4.70
No. 1 2 3 4	Techn. node 75nm 65nm 58nm 46nm	Cell size 8F ² 6F ² 6F ² 6F ²	Cell type Deep Trench buried WL Stack buried WL	Area [mm ²] 5.20 3.54 3.00 2.26	Row t _{RAS} [ns] 39.0 27.1 31.9 26.4	Control / PC TSV Row -> Col. t _{RCD} [ns] 9.30 7.45 7.31 6.44	war generators / Signals s Power & Signals Column t _{ccc} [ns] 6.05 5.42 4.70 3.59

Metrics for Exploration

Throughput (TP)

- maximal theoretical bandwidth $(f_{max} \cdot IO width)$
- f_{max} determined by architecture & technology <u>here</u>: column to column access delay (t_{CCD})

Area efficiency

- Maximum learning out of the commodity DRAM production: minimize cost/bit
- Maximize cell efficiency (CE) = memory cell area / total area [%]

Energy efficiency (EE)

TP / average power = access / energy [MB/mJ]

Multi-Channel 3D-DR	AM Controller
 Front End: Synchronization with Dual Clock FIFOs Arbitration Buffering, Scheduling, Reordering Back End 	FE Memory Controller Channel Controll
 3D DRAM command Encoding Tracking of the BANK status Multi IO reconfiguration and data latching for 32/64/128 bit 	32 64 128 Memory Controller Front End Cc1 cc1 cc0

	3D-DRAM SIN	NGLE CHA	NNEL CO	NFIGUR	ATIONS	
Dens. [Mb]	Architecture # lay. x [org.]	# of banks	Techn. [nm]	Cell size	$rac{A_{total}}{[mm^2]}$	Freq. [MHz]
104 (1899)		SDR	x128			
**256	1 x [4x64Mb]	4	58	$6F^2$	16	200
512	2 x [4x64Mb]	4	58	$6F^2$	26	200
1024	8 x [2x64Mb]	8	46	$6F^2$	35	300
*2048	8 x [2x128Mb]	8	46	$6F^2$	60	167
4096	8 x [4x128Mb]	8	45	$4F^2$	97	200
		DDR	x128			
256	1 x [4x64Mb]	4	58	$6F^2$	22	200
512	2 x [4x64Mb]	4	58	$6F^2$	32	200
1024	8 x [2x64Mb]	8	46	$6F^2$	44	300
*2048	8 x [4x64Mb]	8	46	$6F^2$	69	300
4096	8 x [4x128Mb]	8	45	$4F^2$	98	200

Conclusion

- Bandwidth and memory will be big challenges in future computing systems
- We will see new memory devices e.g. memristor based (RRAMs) or spin based memories (MRAMs)
- The future in computation will be 3D
- New heterogeneous memory architectures
- Large opportunity for research